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Preface

The current edition of Chapter 99 is a revised and expanded version of the previous edition
(Morrison, 2010, Forensic voice comparison). Seven years have passed since the publication of
the previous edition. Much has changed in the intervening years, including advances in research
and technology, and evolution in our knowledge and understanding of the field.

The current edition maintains forensic voice comparison as its primary topic. The previous edition
had a heavy focus on acoustic-phonetic statistical approaches to forensic voice comparison. Since
the publication of the previous edition we have conducted a number of studies comparing the
performance of acoustic-phonetic systems and automatic systems under increasingly more
forensically realistic conditions. Automatic systems performed much better and required much
less investment of human time. As a result, the current edition has a heavier focus on automatic
approaches. The examples of forensic voice comparison from the previous edition have been
replaced with examples of the use of the automatic approach in actual cases.

The current edition also updates the previous edition’s coverage of speaker identification by
laypeople (previously titled non-technical speaker identification).

Additions for the current edition include a short section on legal admissibility of forensic voice
comparison, substantial coverage of disputed utterance analysis, and brief coverage of other
branches of forensic speech science. With the expansion of coverage, we have changed the title
from “Forensic voice comparison” to “Forensic speech science”.

Despite the changes, the current edition is a revised edition of the previous edition rather than a
completely new work. The revised edition still has a relatively long section on human voices,
which is a brief introduction to phonetics. We think that this is useful background information for
understanding forensic voice comparison, and especially for understanding disputed utterance
analysis. Some text from the previous edition has been deleted, but most has been revised, replaced,
or augmented. To maintain the same section numbering as in the previous edition, the sections
have not been reordered. Where sections have been deleted entirely, their section numbers have
been retired. Where sections have been added, they have been given previously unused section
numbers. The exception is that within the sections on examples of forensic voice comparison, the
section numbers have been reused for the new examples. The text of the previous edition was
somewhat cluttered by references. For the revised edition some references from the previous
edition have been culled, and others have been moved to further reading sections. New references
have also been added.

Preparation of the current edition of Chapter 99 was proximal in time to the writing of three other
works with partially overlapping content: Morrison & Thompson (2017), Morrison (2018), and
Morrison & Enzinger (2018). Although partially overlapping in content, we have tried to write
each as a standalone work and write the overlapping content differently to address the different
intended audiences. Morrison & Thompson (2017) and Morrison (2018) review admissibility of
forensic voice comparison in the United States and in England & Wales respectively, and are
primarily addressed to legal audiences. Morrison & Enzinger (2018) gives a more technical
introduction to forensic voice comparison than the present work, and is primarily addressed to
phoneticians. Of the four works, the present one is the only one to include sections on speaker
recognition by laypeople and on disputed utterance analysis. It also gives greater coverage to
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misinterpretations of forensic likelihood ratios (logical fallacies) than the other works. We hope
that readers will find the four works complementary rather than redundant.

Finally, we would like to dedicate the current revised edition in memory of Dr Bryan James Found,
who died suddenly on 23 October 2016. Bryan was Chief Scientist at Victoria State Police, and
also held research positions at La Trobe University and at the University of New South Wales. He
was well known for his pioneering work on empirical validation, cognitive bias, and forensic
analysis of handwriting and signatures. He was extremely knowledgeable and insightful, was
dedicated to improving forensic science, and we count him as one of the giants in the field. He
was incredibly generous, and will be deeply missed by all who knew and loved him.

Geoffrey Stewart Morrison
Ewald Enzinger

Cuiling Zhang

2017
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INTRODUCTION

[99.10] What is forensic voice comparison?

A forensic voice comparison is an analysis conducted in order to help a court of law decide who
is speaking on an audio recording.

In forensic voice comparison, a recording of a speaker of questioned identity (a questioned-
speaker recording) is compared with one or more recordings of a speaker of known identity (a
known-speaker recording). The known speaker is often a suspect or defendant and the questioned
speaker is often an offender. Other scenarios are possible, e.g., the issue may be whether the
questioned speaker is a particular victim or not.

Here are two representative forensic voice comparison scenarios (the details are fictional):

* In a major fraud case involving hundreds of millions of dollars, an audio recording of a
telephone call made by the offender to the bank is available. An audio recording of a
telephone call made by a suspect, a former bank employee, is also available (the defence
does not contest the identity of the speaker on this recording). A forensic practitioner
conducts a forensic comparison of the two voice recordings. In court, the forensic
practitioner testifies that one would be 2000 times more likely to observe the acoustic
properties of the voice on the fraud recording had it been made by the defendant than had
it been made by some other speaker. This, along with other evidence, leads to a conviction.

* The police have a telephone-intercept warrant and record a suspected terrorist plotting
with a previously unknown associate whom they designate Mr X. They eventually arrest
the suspected terrorist and question a number of his associates, making audio recordings
of the interviews. They think that one of the associates, Mr Y, is Mr X because to them the
voices on the two recordings sound the same. They recommend that Mr Y be prosecuted,
but the prosecutor is of the opinion that the other evidence against Mr Y being involved is
weak and will not likely lead to a conviction. The audio recordings are provided to a
forensic practitioner for analysis. The forensic practitioner conducts a forensic voice
comparison and reports that one would be 1000 times more likely to observe the acoustic
properties of the voice on the Mr X recording had it been produced by some other speaker
than had it been produced by Mr Y. The police and prosecutor decide to focus their
resources on other suspects.

Sections [99.770]-[99.890] provide examples of two real forensic voice comparison cases.

[99.12] What is speaker recognition by laypeople?

Speaker recognition by laypeople refers to the ability of people without any special training to
recognise speakers’ voices. Listeners may recognise the voice of a speaker they know. Someone
hearing a crime being committed may think they recognise the voice of an offender, or someone
who knows a suspect may be played a questioned-speaker recording and asked if they recognise
the speaker. An earwitness is someone who hears the voice of an offender in a situation where no
audio recording is available for analysis. The listener usually does not recognise the voice of the
offender as someone they know, but may be asked to listen to a voice lineup and see if they
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recognise any of the speakers in the lineup. Sections [99.910]ff describe speaker recognition by
laypeople and contrast it with forensic voice comparison performed by forensic practitioners.

[99.14] What is disputed utterance analysis?

A disputed utterance analysis is conducted in order to help a court of law decide what was said
on an audio recording.

The words spoken on an audio recording may be indistinct, and hence there may be a dispute
about what was said, because of the speaking style (e.g., the speaker may have been out of breath),
because of poor quality recording conditions (e.g., background noise), because the words are
acoustically similar and therefore intrinsically difficult to differentiate (e.g., “fifteen” versus
“fifty”), or because of some combination of the above. Sections [99.1500]ff describe disputed
utterance analysis.

[99.20] Audience

As part of the Expert Evidence series this chapter is aimed first at lawyers, judges, and police
investigators, however, it is hoped that this chapter will also be of interest to forensic scientists,
phoneticians, speech-processing engineers, and students of all these disciplines. It introduces
forensic voice comparison in a relatively non-technical way, assuming a reader who has no prior
knowledge of the subject. For sake of correctness, occasional more-technical asides will be
necessary, but the focus will be on the understanding of concepts and the provision of basic
knowledge.

[99.30] Structure

This chapter is structured in an order suitable for reading from beginning to end, but some readers
may wish to go straight to sections covering particular topics. To aid the reader, cross-references
point both backwards and forwards.

The first four major sections after this introduction describe the new paradigm for forensic science
[99.70]ff, including the likelihood ratio framework for the evaluation of forensic evidence
[99.140]ff and [99.370]ff, and the testing of the validity and reliability of forensic-comparison
systems [99.290]ff. These provide an introduction to evaluation of forensic evidence applicable
across all branches of forensic science, not just forensic speech science. This should be considered
foundational material for readers not already familiar with these topics, and some later sections
will assume knowledge of these topics.

The next major section [99.440]ff provides an introduction to phonetics, which will help the reader
understand human voices, which are the source of the data that are analysed in forensic voice
comparison and disputed utterance analysis. The next major section [99.600]ff describes how
speech is recorded and how various factors commonly affecting forensic casework recordings
degrade the quality of the speech information in those recordings.

The next major section [99.650]ff describes different approaches to forensic voice comparison.
These can be thought of as different ways of extracting information from speech recordings.
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Sections [99.750]- [99.760] briefly discuss the admissibility of forensic voice comparison in
several common-law jurisdictions.

The next major section [99.770]ff presents two examples of forensic voice comparison analyses
conducted in actual cases. These assume knowledge of many of the preceding sections (with the
primary exception that knowledge of phonetics [99.440]ff is not essential to understand these
examples).

The next major section [99.910]ff discusses speaker recognition by laypeople as opposed to
forensic voice comparison conducted by forensic practitioners. Speaker recognition by laypeople
includes earwitnesses who hear an offender speaking while a crime is being committed. When
there is no audio recording available, earwitnesses may be asked to listen to a speaker lineup.
Speaker recognition by laypeople also includes when individuals such as police officers listen to
questioned-speaker recordings and then claim to recognise the speaker. An example from a real
case is provided. Note that in this scenario a questioned speaker recording exists, so the listener is
not a true earwitness, and a forensic voice comparison could potentially be conducted by a forensic
practitioner. A reader whose immediate interest is speaker recognition by laypeople should be able
to read sections [99.910]ff without having to read the preceding sections of the chapter, although
knowledge of many of the preceding sections would probably help.

The penultimate major section [99.1500]ff describes disputed utterance analysis. Whereas in
forensic voice comparison the question the court wants to answer is “Who was speaking?” in
disputed utterance analysis the question is “What was said?” Knowledge of the new paradigm
[99.70]ff, [99.140]ff, [99.370]ff, validation [99.290]ff, phonetics [99.440]ff, and factors affecting
the quality of speech recordings [99.600]ff is assumed. Examples based on real cases are included.

The final major section [99.1700]ff briefly describes other branches of forensic speech science:

Lie detection

Intoxication detection

Voice disguise in forensic casework

Speaker profiling

Language analysis for determination of origin (LADO)

[99.40] Questions

There are a number of questions which investigators, prosecutors, defence attorneys, judges
considering admissibility, and triers of fact should ask about forensic speech science. The exact
form of the questions and which questions are most important will differ depending on the
questioner’s role in the justice system, but they are fundamentally the same questions addressing
the same underlying issues. The questions below are phrased assuming that the task at hand is
forensic voice comparison.

1. Has the voice evidence been evaluated using the logically correct framework for the
evaluation of forensic evidence?

2. Was the forensic voice comparison analysis based on quantitative measurements of the
acoustic properties of the voices on the recordings?
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3. Has an adequate database of voice recordings of speakers representative of the relevant
population been used to assess the typicality of the questioned-speaker recording?

4. Has the strength of evidence been assessed using an appropriate statistical model, and is
the output of that model directly reported as the strength of evidence statement?

5. Have the validity and reliability (accuracy and precision) of the forensic voice comparison
system been empirically evaluated under conditions reflecting those of the known- and
questioned-speaker recordings in the present case?

6. Is the demonstrated degree of validity and reliability acceptable?

7. What is the strength of evidence from the comparison of the voices on the known- and
questioned-speaker recordings?

This chapter attempts to provide the reader with an understanding of what these questions mean,
why they must be asked, and how to evaluate the answers. Also, how to reword the questions to
apply to other branches of forensic speech science (and to other branches of forensic science in
general).

Morrison, Enzinger, Zhang 15 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

A PARADIGM SHIFT IN FORENSIC SCIENCE

[99.70] A paradigm shift

We are currently in the midst of what Saks & Koehler (2005) have called a paradigm shift in the
evaluation and presentation of evidence in the forensic sciences which deal with the comparison
of the quantifiable properties of objects of known and questioned origin, e.g., deoxyribonucleic
acid (DNA), finger marks, hairs, fibres, glass fragments, tool marks, handwriting, and voice
recordings. Saks & Koehler point out that they “use the notion of paradigm shift not as a literal
application of Thomas Kuhn’s concept (Kuhn, 1962), but as a metaphor highlighting the
transformation involved in moving from a pre-science to an empirically grounded science” (p.
892). In Kuhnian terms, Saks & Koehler’s paradigm shift might be better described as a shift from
a pre-paradigm period towards a period where there is for the first time a single unifying paradigm
for conducting normal science, i.e., a shift from a period during which a number of different
schools pursue solutions to different sets of problems (with only partial overlap between sets)
using different incompatible frameworks, towards a period during which there is agreement
throughout the scientific community as to which problems are important (often a superset of the
problems addressed by two or more of the pre-paradigm schools), and agreement as to the general
procedures for solving these problems and the nature of suitable solutions.

Saks & Koehler (2005) propose that a paradigm shift has already occurred in DNA profile
comparison, and that other forensic-comparison sciences are now shifting towards the new
paradigm. Forensic voice comparison is one branch of forensic science in which this shift is now
well underway but in which it is still far from reaching universal acceptance among researchers
and practitioners.

[99.80] The new paradigm

Saks & Koehler (2005) describe the new paradigm as “empirically grounded science” (p. 892) as
exemplified by “data-based, probabilistic assessment” (p. 893) as is current practice in forensic
DNA-profile comparison. They recommend that other forensic comparison sciences emulate
DNA-profile comparison, including that they “construct databases of sample characteristics and
use these databases to support a probabilistic approach” (p. 893). They also make it clear that
another important aspect of the new paradigm is the quantification and reporting of the limitations
of forensic comparison via the measurement of error rates. The new paradigm therefore echoes
the requirements for admissibility of scientific evidence set out in Federal Rule of Evidence 702
(FRE 702, as amended Apr. 17, 2000, eff. Dec. 1, 2000; Apr. 26, 2011, eff. Dec. 1, 2011) and the
1993 US Supreme Court ruling in Daubert v Merrell Dow Pharmaceuticals (92-102) 509 US 579
[1993], which Saks & Koehler identify as a driving force for the paradigm shift. The Court ruled
that, when considering the admissibility of scientific evidence, the judge should consider the
methodology’s scientific validity, including whether it has been empirically tested and found to
have an acceptable error rate. In 2014 a section on expert evidence was added to the Criminal
Practice Directions (CPD) in England & Wales (current version: [2015] EWCA Crim 1567
Consolidated with Amendment No. 2 [2016] EWCA Crim 1714 at [19A]). CPD 19A has
substantial parallels with FRE 702 - Daubert and stated that “It is essential to recall the principle
which is applicable, namely in determining the issue of admissibility, the court must be satisfied
that there is a sufficiently reliable scientific basis for the evidence to be admitted.” (CPD at 19A.4).
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The call for other branches of forensic science to be more “scientific”, emulate DNA-profile
comparison, and conform to the Daubert requirements was reiterated in the 2009 National
Research Council (NRC) report on Strengthening Forensic Science in the United States (NRC,
2009). Important aspects of a scientific approach identified in the report include “the careful and
precise characterization of the scientific procedure, so that others can replicate and validate it; ...
the quantification of measurements ...; the reporting of a measurement with an interval that has a
high probability of containing the true value; ... [and] the conducting of validation studies of the
performance of a forensic procedure” (p. 121); the latter requiring the use of “quantifiable
measures of the reliability and accuracy of forensic analyses” (p. 23). The NRC report clearly
recommends the use of more objective analytic methodologies over more subjective experience-
based methodologies.

More recently, the 2016 report by President Obama’s Council of Advisors on Science and
Technology (PCAST) on Forensic Science in Criminal Courts: Ensuring Scientific Validity of
Feature-Comparison Methods found that empirical demonstration of scientific validity under
casework conditions was still lacking in a number of branches of forensic science. The report
opined that:

neither experience, nor judgment, nor good professional practices (such as certification
programs and accreditation programs, standardized protocols, proficiency testing, and
codes of ethics) can substitute for actual evidence of foundational validity and reliability.
The frequency with which a particular pattern or set of features will be observed in different
samples, which is an essential element in drawing conclusions, is not a matter of
“judgment.” It is an empirical matter for which only empirical evidence is relevant.
Similarly, an expert’s expression of confidence based on personal professional experience
or expressions of consensus among practitioners about the accuracy of their field is no
substitute for error rates estimated from relevant studies. For forensic feature-comparison
methods, establishing foundational validity based on empirical evidence is thus a sine qua
non. Nothing can substitute for it. (PCAST, 2016, p. 6, emphasis in original)

Empirical validation is also required by the Forensic Science Regulator of England & Wales as
part of accreditation (Forensic Science Regulator, 2014, 2016), and recommended by the
European Network of Forensic Science Institutes’ (ENFSI) Methodological guidelines for best
practice in forensic semiautomatic and automatic speaker recognition (Drygajlo et al., 2015), the
latter specifically in the context of forensic voice comparison.

Although there does not appear to be any indication that either set of authors were consciously
aware of this, there is one other component of the new paradigm which we believe is implicit in
Saks & Koehler’s (2005) and the NRC report’s (2009) recommendation that other forensic
comparison sciences emulate forensic DNA-profile comparison: the adoption of the likelihood-
ratio framework for the evaluation of evidence.

The use of the likelihood-ratio framework is recommended in the Association of Forensic Science
Providers’ Standards for the Formulation of Evaluative Forensic Science Expert Opinion (AFSP,
2009); the Royal Statistical Society’s Fundamentals of Probability and Statistical Evidence in
Criminal Proceedings: Guidance for Judges, Lawyers, Forensic Scientists and Expert Witnesses
(Aitken et al., 2010); ENFSI’s Guideline for evaluative reporting in forensic science (Willis et al.,
2015); ENFSI’s Methodological guidelines for best practice in forensic semiautomatic and
automatic speaker recognition (Drygajlo et al., 2015) the latter specifically in the context of
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forensic voice comparison; and implicitly by PCAST’s report on Forensic Science in Criminal
Courts: Ensuring Scientific Validity of Feature-Comparison Methods (PCAST, 2016; see also
Morrison, Kaye, et al., 2017).

[99.90] Further reading

For a history of the adoption of the new paradigm in forensic-voice-comparison research and
practice up to 2009, see Morrison (2009). For a review of calls from the 1960s onward for the
validity and reliability of forensic voice comparison to be empirically tested under casework
conditions, see Morrison (2014).
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THE LIKELIHOOD-RATIO FRAMEWORK FOR THE
EVALUATION OF FORENSIC EVIDENCE

[99.140] Introduction

The likelihood-ratio framework has already been described in Interpreting Scientific Evidence
[28] (Berger et al., 2016), and its application to DNA in Statistical Evaluation in Forensic DNA
Typing [80A] (Federle et al., 2017). Other descriptions are listed in the further reading section
below [99.250]. Here, we describe the likelihood-ratio framework in the context of forensic voice
comparison.

[99.150] The likelihood-ratio framework

In the likelihood-ratio framework, the task of the forensic practitioner is to provide the court with
a strength-of-evidence statement in answer to the question:

How likely are the observed properties of the voice on the questioned-speaker recording
(the evidence), had it been produced by the known speaker (the same-speaker hypothesis)
versus had it been produced by some other speaker selected at random from the relevant
population (the different-speaker hypothesis)?

The answer to this question is quantitatively expressed as a likelihood ratio, calculated using
Formula 1.

Formula 1
 p(E|H)

LR =———<
p(ElHq)

where LR is the likelihood ratio; E is the evidence, i.e., the measured properties of the voice on
the questioned-speaker recording; p(E|H) is “probability of E given H”’; and Hs is the same-speaker
hypothesis, and Hq is the different-speaker hypothesis (or more generally same-origin and
different-origin hypotheses, or prosecution and defence hypotheses).

The numerator of the likelihood ratio can be considered a similarity term, and the denominator a
typicality term. In calculating the strength of evidence, the forensic practitioner must consider not
only the degree of similarity between the samples, but also their degree of typicality with respect
to the relevant population (we discuss the relevant population in section [99.180] below). In
fictional television shows, forensic practitioners are often portrayed comparing two objects,
finding no measurable differences between them, and shouting “It’s a match!” Similarity alone,
however, does not lead to strong support for the same-origin hypothesis. For example, if two
samples are determined to be similar in terms of some physical properties, this is of little value if
these physical properties are also very typical, because under such circumstances samples selected
at random from any two individuals in the relevant population are likely to be equally or more
similar. On the other hand, if two samples are found to be similar in terms of properties which are
atypical in the population, then samples selected at random from any two individuals in the
relevant population are unlikely to be equally or more similar. In general, more similarity and less
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typicality lead to relatively greater support for the same-origin hypothesis, and less similarity and
more typicality lead to relatively greater support for the different-origin hypothesis.

If the evidence is more likely to occur under the same-speaker hypothesis than under the different-
speaker hypothesis then the value of the likelihood ratio will be greater than 1, and if the evidence
is more likely to occur under the different-speaker hypothesis than under the same-speaker
hypothesis then the value of the likelihood ratio will be less than 1.

Likelihood ratios should not, however, be thought of as binary indicators — it matters how far the
likelihood ratio is from 1. The value of the likelihood ratio is a numeric expression of the strength
of the evidence with respect to the competing hypotheses. If the forensic practitioner testifies that
one would be 100 times more likely to observe the evidence under the same-speaker hypothesis
than under the different-speaker hypothesis (LR = 100), then whatever the trier of fact’s belief
about the relative probabilities of the same- and different-speaker hypotheses being true prior to
hearing this, afterwards they should believe that the probability of the same-speaker hypothesis
being true relative to the different-speaker hypothesis being true is 100 greater than they believed
it to be before. Likewise, if the forensic practitioner testifies that one would be one thousand times
more likely to observe the evidence under the different-speaker hypothesis than under the same-
speaker hypothesis (LR = 1/1000), then whatever the trier of fact’s belief about the relative
probabilities of the same- and different-speaker hypotheses being true prior to hearing this,
afterwards they should believe that the probability of the different-speaker hypothesis being true
relative to the same-speaker hypothesis being true is 1000 greater than they believed it to be before.

Figure 1 shows a series of examples in which the likelihood ratio is 4, but the trier of fact’s belief
as to the relative probabilities of the same- and different-speaker hypotheses being true differ from
example to example. The examples use the analogy of weights on a set of scales to represent the
belief in the relative probabilities of the hypotheses being true.

In the first example, before hearing the likelihood ratio, the trier of fact believes that the probability
that same-speaker hypothesis is true and the probability that different-speaker hypothesis is true
are equal. This is represented by having an equal weight on each side of the set of scales. The
evidence is 4 times more likely if the same-speaker hypothesis were true than if the different-
speaker hypothesis were true, therefore the trier of fact should multiply the weight on the same-
speaker side of the scale by 4. After doing this, the same-speaker side of the scales is 4 times
heavier than the different-speaker side, i.e., the probability that same-speaker hypothesis is true is
4 times greater than the probability that different-speaker hypothesis is true.

In the second example, before hearing the likelihood ratio, the trier of fact believes that the
probability that the different-speaker hypotheses is true is 2 times greater than the probability that
the same-speaker hypotheses is true. This is represented by having 2 weights on the different-
speaker side of the scales and one weight on the same-speaker side. The evidence is 4 times more
likely if the same-speaker hypothesis were true than if the different-speaker hypothesis were true,
therefore the trier of fact should multiply the weight on the same-speaker side of the scale by 4.
After doing this, the same-speaker side of the scales is twice as heavy as the different-speaker side,
i.e., the probability that same-speaker hypothesis is true is 2 times greater than the probability that
different-speaker hypothesis is true.
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Figure 1. Weights on scales as an analogy for the effect a likelihood ratio on beliefs
about the relative probabilities of the same-speaker and different-speaker

hypotheses being true.

Before

different same

Before

different same
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Whatever the trier of fact’s prior beliefs and whatever the value of the likelihood ratio, the same
procedure applies to update those beliefs. The other two examples in Figure 1 show other prior
beliefs, and hence other posterior beliefs. The likelihood ratio could have a different value. If the
likelihood ratio were 10, this would require the weights on the same-speaker side of the scales to
be multiplied by 10. If the likelihood ratio were 1/4, this would require the weights on the
different-speaker side of the scales to be multiplied by 4. If the likelihood ratio were 1/10, this
would require the weights on the different-speaker side of the scales to be multiplied by 10. The
further the likelihood ratio from 1, the greater the strength of the evidence, and the greater the
change in beliefs.

[99.160] Why the forensic practitioner must present the probability of evidence,
and must not present the probability of hypotheses

A forensic likelihood ratio is an expression of the probability of obtaining the evidence given
same- versus different-speaker hypotheses. There are logical reasons why the forensic practitioner
must present a strength-of-evidence statement in this form and must not present the probability of
the hypotheses given the evidence.

The trier of fact does not make their decision on the basis of a single piece of evidence, rather their
task is to come to a decision after having weighed all the evidence presented in court. What the
trier of fact requires from a forensic practitioner, however, is a statement of the strength of a
specific piece of evidence. It is not the role of a forensic practitioner to consider all the evidence.
One forensic practitioner may present the strength of evidence related to specific DNA samples,
another may present the strength of evidence related to specific fingermark / fingerprint samples,
etc., and the trier of fact will weigh all of these together. Not all the evidence will be forensic
comparison evidence evaluated using likelihood ratios, and the trier of fact must also consider the
strength of other evidence such as eye-witness testimony. In addition, before any evidence has
been presented the trier of fact will have some belief as to the innocence/guilt of the defendant,
perhaps influenced by concepts such as “innocent until proven guilty”, and this will also contribute
to their final decision.

If a forensic practitioner wanted to calculate the probability of same-origin versus different-origin
hypotheses they would have to apply Bayes’ Theorem. The odds form of Bayes’ Theorem is
provided in Formula 2. This is in fact just a different expression of the concepts we described in
section [99.150] using the analogy of weights on a scale.

Formula 2
prior odds X likelihood ratio = posterior odds

p(H) o p(ElHs) _ p(HS|E)
p(Hy) p(E|Hy) p(HlE)

In order to calculate the posterior odds (the relative probability of the same-origin versus the
different-origin hypothesis, given the evidence), the forensic practitioner would need to know both
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the likelihood ratio and the prior odds. The prior odds would represent the trier of fact’s belief in
the relative probabilities of the two hypotheses being true prior to the evidence being presented.
When conducting their analysis, the forensic practitioner does not know the trier of fact’s prior
belief.

What might be reasonable prior probabilities?

If a crime were committed on an island and there are known to have been 100 people on the island
at the time, then reasonable prior odds could be as follows:

o Assume that prior to hearing any evidence we assume that the suspect is no more or less
likely to be guilty than any other individual on the island, and that in general no particular
individual is more or less likely to be guilty than any other individual.

o There are 100 people on the island, therefore the prior probability for the suspect is 1/100.
o Similarly, the prior probability for each other individual on the island is 1/100.

e There are 99 other individuals on the island, hence the total probability for the other
individuals is 99%1/100 = 99/100.

o Dividing the former probability by the latter, the prior odds are therefore: (1/100) / (99/100)
=1/99

o This can be represented as 99 weighs on the different-speaker side of the scale and 1 weight
on the same-speaker side.

The reasoning above includes the assumption that, prior to hearing any evidence, no individual
on the island is believed to be more or less likely to have committed the crime than any other
individual. Although it may be appropriate for the trier of fact to make such an assumption, it is
not appropriate for the forensic practitioner to do so. The trier of fact may take into consideration
that some people live in parts of the island remote from where the crime was committed, or that
some portion of the population are children who could not have physically committed the crime,
and therefore the trier of fact may have prior odds different from 1/99. Also, if other evidence has
already been presented in the trial, it is unlikely that the trier of fact’s belief as to same-origin
versus different-origin hypotheses would still be 1/99 immediately prior to the presentation of the
likelihood ratio from the forensic evidence in question.

It is inappropriate for the forensic practitioner to present the posterior odds because the posterior
odds include information and assumptions from sources other than a scientific evaluation of the
known and questioned samples. If the forensic practitioner were to present posterior odds then
they would have to supply their own prior odds. If one forensic practitioner used a high value for
the prior odds and another practitioner used a low one, and otherwise acted the same, the difference
in the prior odds would make the value of the first scientist’s posterior odds higher and that of the
second lower, but this difference has nothing to do with the materials they were asked to compare.
The forensic practitioner’s choice of prior odds could be influenced by their own conscious or
unconscious opinion as to the guilt or innocence of the defendant. Cognitive bias was a major
concern in the NRC report (NRC, 2009, pp. 122-124).
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[99.170] Terminology

Although the likelihood ratio is a component of Bayesian analysis, we have used the term
likelihood-ratio framework rather than Bayesian framework since the latter, unlike the former,
could imply that the forensic practitioner makes use of priors and calculates posteriors.

The fact that forensic practitioners present likelihood ratios in court does not imply that the trier
of fact must assign numeric values to evidence which is not forensic comparison evidence, nor
that they must arrive at their decision via the rigid application of a Bayes’ Theorem.

Another terminological point is that in the likelihood-ratio framework the forensic practitioner
does not perform recognition, identification, or individualisation, because these terms could imply
making a categorical decision, which logically would require imposing a threshold on a posterior
probability. A neutral term such as comparison is more appropriate. We therefore use the term
“forensic voice comparison” rather than either of the traditional terms forensic speaker
identification or forensic speaker recognition. We do not use speaker comparison since that would
be akin to calling fingermark comparison toucher comparison. A term such as forensic
comparison of voice recordings would be more accurate (it is the properties of the recordings
which are actually compared, not the voices themselves), but, since the “of” construction has the
potential to interfere with the understanding of sentence structure, we use the somewhat less exact
term forensic voice comparison.

[99.180] A database representative of the relevant population

The likelihood-ratio framework is a conceptual framework which can be applied to subjective
experience-based beliefs as to the likelihoods of the evidence given the competing hypotheses;
however, to implement the data-based and quantitative-measurement aspects of the new paradigm,
the forensic practitioner must have access to a database of samples which are representative of the
relevant population. Such a database (sometimes called a background database) is necessary in
order to calculate a quantitative estimate of the typicality of the voice on the questioned-speaker
recording. A database representative of the relevant population is also needed to implement the
validity and reliability testing requirements of the new paradigm [99.290]ff.

The relevant population is the population to which the questioned-speaker belongs. In forensic
voice comparison, this can usually be at least restricted to speakers of the same sex and general
age speaking the same language and dialect as can be inferred from listening to the questioned-
speaker recording. For example, if it were apparent that the speaker on the questioned-speaker
recording were an adult male (not obviously a child and not obviously very aged) speaking
Australian English, and this would not be disputed by either the prosecution or the defence, then
an appropriate database would be a database of voice recordings of adult male Australian-English
speakers.

Known- and questioned-speaker recordings are often (but not always) sent for forensic
comparison after a police officer has listened to them and decided that they are sufficiently similar
sounding that it is worth sending them for forensic comparison. If the voices on the two recordings
had sounded very different, they would not have been sent for forensic comparison. In this
scenario, a reasonable relevant population would be speakers who sound sufficiently similar to
the voice on the questioned-speaker recording that a non-expert listener would think they were
worth sending for forensic comparison. In practice, this would at least exclude speakers who sound
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very different from the voice on the questioned speaker recording. For example, if the speaker had
a very deep voice, speakers with high pitched voices would be excluded. This approach also
provides a solution for cases such as when it is not clear whether the speaker is male or female.
An appropriate relevant population could be speakers who sound similar to the voice on the
questioned speaker recording, irrespective of their sex. This could include females plus males with
high pitched voices, or males plus females with low pitched voices.

The defence could posit a more specific relevant population. An extreme case could be that the
relevant population is the defendant’s sister. Because the properties of the sister’s voice would
likely be more similar to those of a female defendant than most of the speakers in a larger relevant
population, the denominator (the typicality part) of the likelihood ratio may be expected to be
larger and the likelihood ratio therefore smaller. But this will not necessarily help the defence. If
the size of the relevant population were in the thousands or millions, then the trier of fact might
start out with prior odds of one over thousands or millions, but if the size of the relevant population
were one, the trier of fact would be more likely to choose prior odds closer to one (equal
probability for the defendant and for the sister). Also, the trier of fact considers all the evidence in
the case. There may be lots of other evidence pointing towards the defendant but no other evidence
pointing towards the sister.

Note that when they conduct the forensic voice comparison, the forensic practitioner is unlikely
to be aware of the exact nature of the defence’s hypothesis, and will usually have to anticipate
what it may be. Whatever hypothesis the forensic practitioner adopts, they should clearly
document what it is so that the judge at an admissibility hearing and/or the trier of fact at trial can
decide whether it is appropriate or not.

[99.190] Differences between DNA data and voice data

With respect to the calculation of forensic likelihood ratios, there are some important differences
between data extracted from DNA samples and data extracted from voice recordings. These
differences may lead to differences in the way the results of forensic DNA comparison and
forensic voice comparison are presented, which may superficially give the impression that the two
are not evaluated using the same framework. In fact, both DNA evidence and voice comparison
evidence can and should be evaluated using the likelihood ratio framework.

This section includes a simplified account of forensic DNA comparison. Our purpose is to
highlight some basic differences between DNA and voice data, not to discuss issues in the
interpretation of DNA evidence.

A DNA profile consists of discrete values (e.g., counts of short tandem repeats) from a finite
number of measurements (e.g., pairs of alleles at specific loci). DNA properties are discrete at the
molecular level, their values are continuous at the measurement level (locations and height of
peaks on an electropherogram), but they have traditionally been converted back to discrete values
to provide discrete DNA profiles for statistical analysis. To a first approximation it is assumed
that DNA profiles have no measurement errors, that samples are not contaminated, that the
organisms from which DNA samples originate have not undergone transplants, etc. It is possible
to obtain a “match” between two DNA profiles, i.e., for each corresponding locus and allele each
of the two profiles has the same discrete value. Under the assumptions laid out above, the DNA
profile of an individual organism does not change from occasion to occasion, hence the probability
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of obtaining matching DNA profiles given the same-origin hypothesis is 1, and the probability of
obtaining non-matching DNA profiles given the same-origin hypothesis is 0. The numerator of
the likelihood ratio is therefore either 1 or 0.

If the two samples do not match, the numerator of the likelihood ratio is 0 and the denominator is
irrelevant, the value of the likelihood ratio is 0 and via Bayes’ Theorem the posterior odds will
also be 0 (the prior odds are irrelevant since anything multiplied by 0 is still 0), the two samples
do not have the same origin.

If the two samples match, the numerator of the likelihood ratio is 1 and the size of the likelihood
ratio is then dependant on the denominator, the probability of the DNA profile of the questioned
sample matching the DNA profile of the known sample if the questioned sample came from a
source other than the known source.

Often when the samples match, the match probability rather than the likelihood ratio is reported
in court. The match probability is simply the denominator of the likelihood ratio, or equivalently
the inverse of the likelihood ratio, i.e., it is the probability of obtaining the matching DNA profile
under the different-origin hypothesis versus under the same-origin hypothesis.

An acoustic-phonetic or automatic forensic voice comparison system would be based on
measurements of acoustic properties of voices (see [99.700] and [99.720]). These acoustic
properties are continuous, not discrete. (Another example of a continuous measurements is height:
People do not have to be exactly 174 cm tall or 175 cm tall or 176 cm tall, they can be any value
including 174.5, 174.9, 174.999999, 175.0000001 cm.) There is also substantial within-speaker
variation, even if a speaker says exactly the same words twice in a row it would be extremely
unlikely for there not to be measurable differences in the acoustic properties of the two utterances.
Note that this is not just the precision of the measurement techniques, it is also intrinsic variability
at the source. In practice a speaker is unlikely to repeat long stretches of exactly the same words,
and there will likely also be variability due to speaking style and recording conditions (see
[99.600]ff).

For continuously valued properties with this sort of variation a “match”, in terms of two samples
being indistinguishable within the precision of measurement techniques, or in terms of the
difference not being “statistically significant”, or in terms of the difference between the two not
exceeding some pre-determined threshold, suffers from a cliff-edge effect (Robertson et al., 2016,
pp. 148-150). For example, if the threshold were set at 10 Hz then a value of 9.99 Hz would be
declared a match, but an almost identical value of 10.01 Hz would be declared a non-match.
Approaches using a “match”/“non-match” threshold also fail to fully exploit the information
available in the measurements made on the known- and questioned-origin samples, thus leading
to poorer performance than would be obtained using statistical models which work directly with
the continuously valued data (Morrison, Kaye, et al., 2017).

“Match” is therefore not a useful concept for the acoustic properties of voices, and forensic voice
comparison results should be reported in the form of a full likelihood ratio. The same can be said
for many other branches of forensic science.

In fact, even for DNA, problems have emerged with the “match”/“non-match” approach, leading
to the use of full likelihood ratios rather than random match probabilities. With technological
advances and increased sensitivity of equipment for extracting DNA, smaller and smaller amount
of DNA can be analysed, but the probability of error in the measurement process increases. Thus
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two measured profiles from the same individual may not have an exact match and it makes sense
to use models in the numerator of the likelihood ratio that can provide probabilities between 0 and
1. A greater proportion of cases now involve mixtures of DNA from different individuals. Again,
the solution requires models in the numerator of the likelihood ratio that can provide probabilities
between 0 and 1.

[99.200] Calculating a forensic likelihood ratio

This section describes how to calculate a forensic likelihood ratio at a general conceptual level.
At a detailed mathematical level there are multiple different procedures for calculating forensic
likelihood ratios, many of which are much more complicated than those presented here. The aim
of this section is to provide the reader with a basic understanding of how a forensic likelihood
ratio is calculated and also of some factors affecting the size of the likelihood ratio. All the data
presented in this section are simple artificial data designed for illustrative purposes, they are not
intended to be realistic.

[99.210] Calculating a forensic likelihood ratio from discrete data

Let us begin with a fanciful discrete-data example. Imagine the competing hypotheses are Hi: “the
animal is a cow”, and H,: “the animal is not a cow”, and our evidence consists of a count of the
number of legs on the animal. First we need some data, | go out to the countryside and look for
animals. Whenever | see an animal | record whether it is or is not a cow and the number of legs
that it has (assume that animals only have whole numbers of legs, no half legs etc., also assume
that there are no disputes about what is and what is not a cow). At the end of the day I calculate
the proportion of the total number of cows which had one leg, two legs, three legs, four legs, etc.
I do the same for non-cows. | display this information graphically as the bar graphs in Figure 2.
It turns out that 2% of the cows | saw had three legs and the other 98% had four legs (or in
proportions 0.02 and 0.98). Note that, since each is a proportion of the whole, the heights of the
red bars in Figure 2 sum to 1. | also saw some sheep and horses, most with four legs but some
with three, some ducks and chickens including a one-legged duck, and also some insects and
spiders (I didn’t see any snakes or earthworms, or centipedes or millipedes). Note that, since each
is a proportion of the whole, the heights of all the blue bars in Figure 2 sum to 1.

Now | am told that the evidence is that the animal in question has four legs. How do I calculate
the likelihood ratio p (4 legs | cow)/p (4 legs | not cow)? In Figure 2 | go to number of legs = 4,
and take the relative proportions of cows with four legs and non-cows with four legs: 0.98 / 0.49
= 2. Having four legs would be twice as likely if the animal were a cow than if it were not a cow.
Whatever one believed before hearing this evidence, one should now believe that the probability
that the animal is a cow relative to the probability that it is not a cow is two-times greater than one
believed it to be before.
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FIGURE 2. Bar graph of discrete data.
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[99.220] From discrete data to continuous data

As noted in section [99.190] voice data are normally continuous, not discrete. For calculations
based on continuous data, bar graphs are replaced by histograms or probability density functions.

In a histogram of continuous data there are no gaps between the rectangles and each covers a range
of values. For example, if each rectangle is 10 units wide then one rectangle could cover the range
40 < x <50 (x is greater than or equal to 40 and less than 50), and the next rectangle would cover
the range 50 < x < 60 (see Figure 3a). The area of a rectangle represents the proportion of the data
that falls within the range it covers, e.g., if 2.5% of the data fall in the range 40 < x < 50 then the
rectangle will be 0.0025 units tall to give it an area of 0.0025 x 10 = 0.025. The sum of the areas
of all the rectangles must equal 1.

Now, imagine that we have a very large amount of data so that we can reduce the widths of the
rectangles and still have enough data to be able to calculate a meaningful value for the proportion
of data within each rectangle’s range. Say we start by reducing the width of each rectangle to 5
units, one rectangle could cover the range 40 < x < 45 and the next 45 < x < 50, etc. (see Figure
3b). We now see more detail in how the proportions change as the x value changes. As before, the
area of the rectangle represents the proportion of data points which falls within the range it covers,
e.g., if 1% of the data points fall in the range 40 < x < 45 then the rectangle will be 0.002 units tall
to give it an area of 0.002 x 5 = 0.01. The sum of the areas of all the rectangles must still equal 1.
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FIGURE 3. Transition from histogram to probability density function for continuous
data.
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As the widths of the rectangles are reduced (Figures 3a through 3d), the size of the steps between
rectangles decrease, not just the widths of the steps but also their height differences. Eventually
the tops of the rectangles will look like a smooth curve rather than a series of steps (see Figure
3d). If we make some assumptions about the shape of this curve, such as that it is a Gaussian
distribution (also called a normal distribution), then even with relatively small amounts of data
we can skip straight to an estimate of the shape of the curve. The curve is the calculated probability
density function trained on the data. To train a Gaussian distribution we only need to estimate the
mean and standard deviation. Note that the total area under the curve is still equal to 1.

[99.230] Calculating a forensic likelihood ratio for continuous data

As mentioned above [99.220], for calculations based on continuous data, bar graphs are replaced
by probability density functions, but otherwise the same procedures as in the discrete-data
example [99.210] can be followed.

Let us imagine this time that each of our data points is a measurement of the mean fundamental
frequency (f0) of a voice in a voice recording. This voice property is described in [99.540], what
matters here is that fO can differ between speakers (some speakers have a higher mean f0 value
and others a lower mean fO value), and also within speakers (on one occasion a speaker may
produce a higher mean f0 value and on another occasion a lower mean f0 value).

We collect a database of voice recordings of speakers from the relevant population and measure
the mean 0 of each recording and calculate the probability density function for these values. This
is plotted in Figure 4. Likewise we collect multiple non-contemporaneous recordings of the voice
of the known speaker and calculate the probability density function for the mean fO from each of
these recordings. This is also plotted in Figure 4. The former probability density function we will
call the population model, and the latter the known-speaker model.
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FIGURE 4. Calculation of a likelihood ratio from a known-speaker model and a
population model.
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In this example the population model is a Gaussian distribution with a mean of 100 Hz and a
standard deviation of 30 Hz, and the known-speaker model is a Gaussian distribution with a mean
of 150 Hz and a standard deviation of 15 Hz. To calculate a likelihood ratio, we find the mean f0
value of the voice on the questioned-speaker recording, then, at that value find the relative heights
of the curves of the known-speaker and population models, see Figure 4. If the questioned-speaker
value is 175 Hz, the probability-density-function (aka likelihood) value of the known-speaker
model at 175 Hz is 0.0066, the probability-density-function (likelihood) value of the population
model at 175 Hz is 0.00058, and the likelihood ratio is therefore 0.0066 / 0.00058 = 11.35. One
would be approximately 11 times more likely to obtain the fO value of 175 Hz of the voice on the
guestioned-speaker recording if it had been produced by the known speaker than if it had been
produced by a speaker selected at random from the relevant population.

What if, instead of 175 Hz, the mean fO of the questioned-speaker recording was 150 Hz, right at
the mean value for the known-speaker recordings? In this case, as shown in Figure 5, instead of
11.35, the likelihood ratio would be 8.02.

What if the voice on the questioned-speaker recording were even more typical and had a mean f0
of 125 Hz or 100 Hz? In these cases, as shown in Figure 6, the likelihood ratios would be 0.71
(0.71 in favour of the same-speaker hypothesis, or 1/0.71 = 1.42 in favour of the different-speaker
hypothesis) and 0.0077 (129 in favour of the different-speaker hypothesis) respectively.

If the voice on the questioned-speaker recording is atypical in the opposite direction to the
atypicality of the voice of the known speaker, then the support for the different-speaker hypothesis
is even higher, e.g., if the voice on the questioned-speaker recording has a mean f0 of 75 Hz then
the likelihood ratio is 94,810 in favour of the different-speaker hypothesis.
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FIGURE 5. Calculation of a likelihood ratio from a known-speaker model and a
population model.
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FIGURE 6. Calculation of likelihood ratios from a known-speaker model and a
population model.
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Note that at a value of approximately 128 Hz, the likelihood ratio would be 1 — one would be
equally likely to obtain this value irrespective of whether the voice on the questioned-speaker
recording had been produced by the known speaker or by another speaker from the relevant
population.

In the previous examples the known-speaker model was relatively atypical. What if the voice of
the known speaker were more typical? In Figure 7 the known-speaker model has the same mean
as the population model (100 Hz), and is thus maximally typical. The standard deviations are
unchanged from the previous examples. As was the case in Figure 5, the mean fO value for the
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questioned-voice sample is at the mean value for the known-speaker model, but instead of being
8.02, because the known-speaker model is now more typical, the likelihood ratio is only 2.

Note that even though in this example the known-speaker model is maximally typical and has the
same mean as the population model, the likelihood ratio is not 1, and one is still more likely to
obtain a mean f0 at the maximally typical value if the voice on the questioned-speaker recording
had been produced by the known speaker than if it had been produced by some other speaker. This
is because not all speakers in the population are maximally typical and because some are atypical
they are less likely to produce the maximally typical mean fO value, which contributes to this being
less likely for the population as a whole.

FIGURE 7. Calculation of a likelihood ratio from a known-speaker model and a
population model.
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What if the within-speaker variability were greater? The known-speaker model in Figure 8 has a
standard deviation of 25 Hz as opposed to 15 Hz as was the case in the earlier examples. The mean
for the known-speaker model is 150 Hz as was the case in Figures 4 through 6. The first-three
questioned-speaker values of 175 Hz, 150 Hz, and 125 Hz, which previously resulted in likelihood
ratios of 11.35, 8.02, and 0.71, now result in likelihood ratios of 16.57, 4.83, and 1.03. Questioned-
speaker values close to the mean of the known-speaker model now result in smaller likelihood
ratios than before and questioned-speaker values relatively far from the mean of the known-
speaker model now result in larger likelihood ratios than before.

In general, the smaller the within-speaker variability relative to between-speaker variability, the
better the performance of the forensic-comparison system (assessing system performance is
discussed in [99.290]). Most speakers will be relatively typical (by definition) so most known-
speaker models will have means close to the mean of the population model, and as the within-
speaker variance approaches the between-speaker variance the known-speaker model and
relevant-population model curves will get closer together, and therefore most likelihood ratios will
approach 1 and not provide strong support for either hypothesis.
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FIGURE 8. Calculation of likelihood ratios from a known-speaker model and a
population model.
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All the previous examples have used models consisting of a single Gaussian as a relevant-
population model and a single Gaussian as a known-speaker model; however, more complex
models are usually used in forensic voice comparison. For example, procedures based on Gaussian
mixture models (GMMs) are common. Multiple Gaussians are used to fit a more complex
distribution than can be achieved using a single Gaussian. Figure 9 provides an example of a
relevant-population model and a known-speaker model each based on four Gaussians. The GMMs,
shown as the thick lines, are the result of summing the individual Gaussians shown as thin lines
(in this case each individual Gaussian was given equal weight).

FIGURE 9. One-dimensional Gaussian mixture models.
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All the previous examples have been unidimensional, using measurements of a single acoustic
property of the voice recordings. In practice, forensic voice comparison is usually based on
measurements of multiple acoustic properties of voice recordings. This has the potential to lead to
much larger likelihood ratios in favour of one hypothesis or the other. A recording of a voice may
be only moderately atypical on measurements of each of a number of acoustic properties, but the
particular combination of these measured values may be highly atypical. Figure 10 provides an
example of a relevant-population model and a known-speaker model (each a Gaussian mixture
model) in a two-dimensional space.

FIGURE 10. Two-dimensional Gaussian mixture models.
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[99.240] Calibration and fusion

The models used in the description of the calculation of likelihood ratios above [99.230] are
theoretically correct, but there may be a number of practical difficulties in using them. These could,
for example, be related to whether the model is appropriate for the true distribution of the data,
whether there are sufficient data to train models which are sufficiently accurate and precise
estimates of the true distributions, or whether aspects of the likelihood-ratio calculation procedure
violate statistical assumptions. There is also the problem of how to combine multiple estimates of
likelihood ratios on the same data, by different systems, e.g., an automatic system and an acoustic-
phonetic system.

The practical solutions to these problems are called calibration and fusion, and a single procedure,
logistic regression, can be used to do both (Brimmer & du Preez, 2006; Gonzalez-Rodriguez et
al., 2007; Pigeon et al., 2000). One way to view calibration is to consider the raw likelihood ratios
calculated using the sorts of procedures described above, not as likelihood ratios per se, but rather
simply as scores. Scores quantify the degree of similarity of pairs of samples while also taking
account of their typicality, but their value are not directly interpretable as likelihood ratios
answering the question posed by the same- and different-speaker hypotheses. Calibration converts
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scores into likelihood ratios, or fusion converts parallel sets of scores from different systems into
likelihood ratios.

[99.250] Further reading

General introductions to the likelihood-ratio framework can be found in numerous books and
articles, including Robertson et al. (2016), Balding & Steele (2015) ch. 1-3 and 11, and Kaye et
al. (2011). Introductions in the context of forensic voice comparison can be found in Rose (2002,
2003), Morrison & Thompson (2017), and Morrison & Enzinger (2018).

Selection of the relevant population in the context of forensic voice comparison is discussed in
Morrison et al. (2012) and Morrison, Enzinger & Zhang (2016), see also Gold & Hughes (2014)
and Hughes & Foulkes (2015).

A tutorial on logistic regression calibration and fusion is presented in Morrison (2013).

The problem of cognitive bias in forensic science is reviewed in Risinger et al. (2002), Saks et al.
(2003), Found (2015), Stoel et al. (2015), and Edmond et al. (2017).
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ASSESSING THE VALIDITY AND RELIABILITY
(ACCURACY AND PRECISION) OF FORENSIC-
COMPARISON SYSTEMS

[99.290] Introduction

In judicial literature, the word reliability has often not been used without being explicitly defined.
The Daubert ruling (at footnote 9) equates evidential reliability with scientific validity. Daubert
advises the judge at an admissibility hearing to consider whether the forensic practitioner’s
methods have been empirically tested and found to have an acceptable error rate.

In statistics and scientific literature validity and reliability mean different things — validity is
synonymous with accuracy and reliability with precision.

To illustrate the difference between accuracy and precision, imagine a device for measuring a
person’s height. It consists of a base which sits on the ground, a vertical pole with marks on it,
and a horizontal arm which slides up and down the pole. A person stands on the base, the arm is
placed on top of their head, and their height is read off as the value marked on the pole.

Now imagine that this device is broken and rather than being vertical (fixed at 90° to the base),
the pole is somewhat loose and sometimes the person is measured with the pole at 85°, other times
at 95°, and various other angles in between. For the sake of argument, let us also assume that a
person’s height is fixed and that we have an oracle who can tell us a person’s true height. We
measure the same person’s height multiple times using the broken device. Sometimes we measure
their height as 177 cm, sometimes as 173 cm, and other values in between. We take the mean of
all the measurements and we find it to be 175.1 cm. The oracle tells us that in fact the true height
of this person is 175.0 cm. Our measuring device is very accurate, averaging over multiple
measurements it has come up with an answer which is only 1 mm (0.057%) away from the true
value. In contrast, the measuring device is not very precise, our measurements range from
approximately 2 cm below to 2 cm above the mean value.

Now imagine that the measuring device has been repaired and the pole is now fixed at 90° to the
base. We measure the same person again multiple times and we get values which range from
176.9 cm to 177.1 cm with a mean of 177.0 cm. The device is now much more precise, our
measurements only range from 1 mm below to 1 mm above the mean value, but its accuracy is
now poor, the mean of our measurements is 2 cm too high! Upon inspection, we discover that as
part of the “repair” the pole was made shorter, removing 2 cm from the bottom.

Ideally, for any system, we would like to have both a high degree of accuracy and a high degree
of precision.

[99.300] Measuring the accuracy of a forensic-comparison system

The accuracy of the output of a forensic-comparison system can be assessed by testing it on a
large number of pairs of samples (a test set) where it is known for each pair whether its members
have the same origin or different origins, then comparing the system’s output with this knowledge
about the input.
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A common measure of accuracy is correct-classification rate, i.e., the proportion of true positives
(the proportion of same-origin pairs correctly classified as same origin) and the proportion of true
negatives (the proportion of different-origin pairs correctly classified as different origin); or
alternatively, classification-error rate i.e., the proportion of false positives (the proportion of
different-origin pairs incorrectly classified as same origin) and the proportion of false negatives
(the proportion of same-origin pairs incorrectly classified as different origin). Classification-error
rate is simply the inverse of correct-classification rate.

Classification-error rate (and correct-classification rate) are the result of binary (same or different)
decisions made on the basis of posterior probabilities. Because it is based on posterior probabilities,
this approach is inconsistent with the likelihood-ratio framework. The binary nature of the
decisions is also inconsistent with the likelihood-ratio framework.

Likelihood ratios greater than one favour the same-origin hypothesis and likelihood ratios less
than one favour the different-origin hypothesis; however, forensic comparison of known and
questioned samples is not a binary decision task but rather the task of determining the strength of
evidence with respect to the same-origin versus different-origin hypotheses, i.e., the extent to
which likelihood ratios are greater than or less than one, see section [99.150].

It is often convenient to convert likelihood ratios to log likelihood ratios since the latter are
symmetrical about zero, e.g., likelihood ratios of 1000 (one thousand in favour of the same-origin
hypothesis) and 1/1000 (one thousand in favour of the different-origin hypothesis) become log-
base-ten likelihood ratios of +3 and —3 respectively, and likelihood ratios of 10,000 and 1/10,000
are log-base-ten likelihood ratios of +4 and —4 respectively. Count the number of zeros in the
likelihood ratio! A likelihood ratio of 1 corresponds to a log likelihood ratio of 0.

Ideally, for a same-origin pair the forensic-comparison system should produce a large positive log
likelihood ratio, and for a different-origin pair it should produce a large negative log likelihood
ratio. For a same-origin comparison, a small positive log likelihood ratio is not as good as a large
positive log likelihood ratio, a small negative log likelihood ratio is worse than a small positive
log likelihood ratio, and a large negative log likelihood ratio is worse than a small negative log
likelihood ratio (mutatis mutandis for a different-origin comparison). It is worse to report a
likelihood ratio of 1000 in favour of a contrary-to-fact hypothesis than it is to report a likelihood
ratio of 10 in favour of a contrary-to-fact hypothesis, because the former provides greater support
for the contrary-to-fact hypothesis and therefore has greater potential to contribute the trier of fact
making an incorrect decision.

A measure of accuracy which is consistent with the likelihood-ratio framework is the log-
likelihood-ratio cost (Cyr; Briimmer & du Preez, 2006). Cyr was developed for use in automatic
speaker recognition and has subsequently been applied to forensic voice comparison (e.g.,
Gonzalez-Rodriguez et al., 2007). In contrast to classification-error rates, Cy, has the desired
properties of being based on likelihood ratios, and of being continuous and more heavily
penalising worse results.

To calculate Cyy, one must first calculate a penalty value for the likelihood ratio from each test
pair. Figure 11 provides a plot of the function for calculating a penalty value when the input to the
system is a same-origin pair (blue line). Large positive log likelihood values which correctly
support the same-origin hypothesis are assigned very low penalty values, log likelihood values
close to zero provide little support for either the same-origin or different-origin hypothesis and are
assigned moderate penalty values, and negative log likelihood values which contrary-to-fact

Morrison, Enzinger, Zhang 37 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

support the different-origin hypothesis are assigned high penalty values. The size of the penalty
values increase rapidly as the log likelihood values become more negative and provide stronger
support for the contrary-to-fact different-origin hypothesis. The function for calculating a penalty
value when the input to the system is a different-origin pair (red line in Figure 11) is a mirrored
version of the same-speaker function.

FIGURE 11. Plot of the function for calculating a Cir penalty value for same-origin
test pairs (blue line) and different-origin test pairs (red line).
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To calculate Cy, one finds the mean of all the penalty values from same-origin test pairs, the mean
of all the penalty values from different-origin test pairs, and then takes the mean of the latter two
means. The function for calculating Cy is given in Formula 3, where Ns and Ng are the number of
same-speaker and different-speaker test pairs, and LRs and LRy are the likelihood ratios derived
from same-speaker and different-speaker test pairs. A same-origin penalty value is logz(1 + 1/LRs),
and a different-origin penalty value is log2(1 + LRqg).

Formula 3

z log, ( IR, ) Z logz 1 + LRy, )

The lower the Cyyr, the better the performance of the system. If several systems are tested using the
same set of test data, then the most accurate system is the system which results in the lowest Cyr
value.

It is important to note that (as with other measures of accuracy such as classification-error rates)
Cur depends on the test data as well as the forensic comparison system. To be meaningful in
casework, the test data should therefore be samples which are representative of the relevant
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population [99.180], and the conditions of each member of each test pair should reflect as closely
as possible to the conditions of the known- and questioned-speaker recordings (e.g., speaking style,
recording quality, and recording duration, see section [99.600]ff). In this way, the results of the
tests will reflect the expected performance in the system under the conditions of the case.

[99.310] Measuring the precision of a forensic-comparison system

It is important to consider the precision of a forensic-comparison system as well as its accuracy.
All else being equal, a system that outputs a more precise value is better than a system that outputs
a less precise value. There is, however, disagreement among forensic statisticians as to the best
way to handle imprecision. Some provide a best estimate for the value of the likelihood ratio and
a range of values within which they believe the value is likely to lie, e.g., a best estimate of 1000
with a 90% probability of being in the range 900 to 1100. An alternative to this is to only report
the bound closest to a likelihood ratio of 1, e.g. a 95% probability that the likelihood ratio is at
least 900. Others have philosophical objections to this approach, and instead calculate a single
value, but that single value would usually be closer to a likelihood ratio of 1 than the first group’s
best estimate. The first group could be called frequentists and the second group subjective
Bayesians, but in reality the situation is more complex and there are a variety of subgroups with
different nuanced thinking on the issue. Part of the debate on this issue appears in a virtual special
issue of the journal Science & Justice, and can be accessed at <http://www.sciencedirect.com/
science/journal/13550306/vsi>. Given the lack of agreement on the issue, we do not here go into
details as to how to calculate the precision of a forensic analysis system.

Imagine that a forensic practitioner has calculated a likelihood ratio using a sample of 200 speakers
from the relevant population and presents the resulting value in court. Curran (2016, p. 380) points
out that:

An astute lawyer would also ask “If I took another sample of size 200, would this figure
change?” The single most effective response to this question is “Yes, and my method for
assessing this probability has already taken this into account.” I believe that an expert
witness who has used a statistically justifiable method for quantifying and adjusting for
sampling uncertainty in his or her evaluation will be well-equipped to respond to the
sample size question.

We recommend that lawyers engaging the services of a forensic practitioner ask the practitioner
how the practitioner’s method for assessing probability takes precision into account.

[99.330] Tippett plots

A graphical method for presenting the results of testing a forensic analysis system is a Tippett plot.
Tippett plots were introduced in Meuwly (2001) (inspired by the work of C.F. Tippett), and are
now a standard method for presenting results in forensic voice comparison research. Tippett plots
provide more detailed information about the results than is available from a summary measure
such as Cyr. This section provides a guide to the interpretation of Tippett plots.

Figures 12 through 14 provide a series of Tippett plots drawn on the basis of hypothetical sets of
output from forensic-comparison systems. The blue lines rising to the right represent the results
from same-speaker test pairs. The value on the y axis is the cumulative proportion of log likelihood
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ratios less than or equal to the value indicated on the x axis. The red lines rising to the left represent
the results from different-speaker test pairs. The value on the y axis is the cumulative proportion
of log likelihood ratios greater than or equal to the value indicated on the x axis. In these
hypothetical results the same-speaker and different-speaker lines are symmetrical and cross at a
log likelihood ratio of zero; this need not be the case for real test results.

FIGURE 12. Tippett plot of hypothetical test results.
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FIGURE 13. Tippett plot of hypothetical test results.
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FIGURE 14. Tippett plot of hypothetical test results.
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As discussed in section [99.300], a forensic-comparison system with good performance would
produce a large positive log likelihood ratio for a same-origin test pair, and a large negative log
likelihood ratio for a different-origin test pair. Large-magnitude log likelihood ratios which
support the consistent-with-fact hypothesis are better than small-magnitude log likelihood ratios
which support the consistent-with-fact hypothesis. Log likelihood ratios which support the
contrary-to-fact hypothesis are bad, and the larger their magnitude the worse they are. Therefore,
in Tippett plots the further apart the same-speaker and different-speaker lines (the further to the
right the same-speaker line and the further to the left the different-speaker line) the better the
performance. The results presented in the Tippett plot in Figure 13 therefore indicate a system
with better performance than the system whose results are presented in the Tippett plot in Figure
12.

Note, however, that (as with the Cy; metric) log likelihood ratio results which support contrary-to-
fact hypotheses are of greater concern than whether the consistent-with-fact log likelihood ratio
results are relatively small or large — a system which reduces support for contrary-to-fact
hypotheses is preferable even if this leads to some reduction in its strength of support for
consistent-with-fact hypotheses. The results presented in the Tippett plot in Figure 14 are therefore
better than those presented in the Tippett plot in Figure 12, but worse than those in Figure 13.

[99.340] Further reading

For more detailed descriptions of procedures for empirically testing the validity and reliability of
forensic analysis systems (including forensic voice comparison systems), and metrics and graphics
for communicating the results, see Morrison (2011), Meuwly et al. (2016), and Morrison &
Enzinger (2016).
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MISINTERPRETATIONS OF FORENSIC
LIKELIHOOD RATIOS

[99.370] Introduction

A problem for the presentation of a likelihood ratio as a strength of evidence statement is potential
misinterpretation of the meaning of the likelihood ratio. Misinterpretations can occur in the mind
of a lawyer, judge, or jury member, and can be inadvertently caused by a forensic practitioner
misphrasing their strength of evidence statement. Forensic practitioners should be careful not to
inadvertently cause a misinterpretation via misphrasing, and as much as possible try to prevent
others from misinterpreting correctly phrased statements. Lawyers and judges should also be
careful not to induce misinterpretations in the minds of jury members. Common misinterpretations
include the prosecutor’s fallacy, the defence attorney’s fallacy, and the trier of fact’s fallacy.

[99.380] The prosecutor’s fallacy
Forensic Practitioner:

One would be one thousand times more likely to obtain the measured acoustic properties
of the voice on the questioned-speaker recording if it had been produced by the accused
than if it had been produced by some other speaker from the relevant population.

Prosecutor:

So, to simplify for the benefit of the jury, what you are saying is that the probability that
the defendant is the questioned speaker is one thousand times greater than the probability
that someone else from the relevant population is the questioned speaker.

The forensic practitioner’s statement above is an expression of a likelihood ratio (relative
probabilities of evidence given hypotheses). It does not include consideration of prior odds. In
contrast, the prosecutor’s statement above is an expression of posterior odds (relative probabilities
of hypotheses given evidence), which logically must depend on both a likelihood ratio and prior
odds, see [99.160]. The posterior odds and the likelihood ratio would only have the same value if
the prior odds were 1 (if a priori the same- and different-speaker hypothesis were equally probable),
which is seldom the case. If the prior odds are not explicitly 1, then equating the value of the
posterior odds with the value of the likelihood ratio is fallacious. It is called the prosecutor’s
fallacy, or more generally the transposition of the conditionals.

To understand why the prosecutor’s fallacy is such a serious mistake let us return to the cow
example from section [99.210]. Imagine that we tell you we have a cow somewhere out of sight
and we ask you: “What is the probability that it has four legs given that it is a cow?”
P(E =4 legs | Heow ). In the imaginary data which we reported in [99.210] we said that 98% of
cows had four legs, which corresponds to a probability of 0.98. In reality the probably may be
much closer to 1.

Now let us ask the transposed-conditional question: “What is the probability that an animal is a
cow given that it has four legs?” p( Heow | E = 4 legs ). It should be immediately obvious that the
answer to this question is certainly not a probability close to 1 — lots of animals including sheep,
pigs, horses, dogs, cats, giraffes, and elephants usually have four legs, and the proportion of four-
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legged animals in the world which are cows is probably quite small, maybe less than 0.01 (1%),
i.e., close to 0, not close to 1.

The prosecutor’s fallacy is to take the statement:

The probability of the animal having four legs given that it is a cow is very high.
And misphrase or misinterpret it as:

Given that the animal has four legs, the probability of it being a cow is very high.
Or similarly take the statement:

The probability of the occurrence of the acoustic properties of the voice on the questioned-
speaker recording is much higher had it been produced by the known-speaker than had it
been produced by some other speaker.

And interpret it as:

Given the acoustic properties of the voice on the questioned-speaker recording, the
probability that it was produced by the known-speaker is much higher than the probability
that it was produced by some other speaker.

What is missing is the prior probability or the prior odds.

For sake of argument, assume the likelihood ratio is 99 and the trier of facts’ prior odds are 1/1000.
If the prosecutor’s fallacy were committed, the mistake would be to interpret the likelihood ratio
of 99 as posterior odds of 99. This is equivalent to a 99% posterior probability that the defendant
is the questioned speaker.

In fact, using Formula 2 from [99.160] (prior odds x likelihood ratio = posterior odds), the correct
posterior odds would not be 99, but instead: 1/1000 x 99 = 99/1000 = 0.099. This is equivalent to
a 9% posterior probability that the defendant is the questioned speaker.

9% is very different from 99%!

For the mathematically inclined, the equation for converting from coherent odds, o(Hs) = p(Hs)/
p(Hq), to probability, p(Hs), is given in Formula 4 (the odds, and the probabilities, are coherent if
and only if p(Hs) + p(Hg) = 1).

Formula 4
o(Hy)

p(H) = 1+ o(H,)

[99.385] Avoiding the prosecutor’s fallacy

The term “prosecutor’s fallacy” was coined for transposition of the conditional in a legal context
since, assuming the prior odds are less than 1, it is more advantageous to the prosecution than to
the defence. Although the term “prosecutor’s fallacy” may suggest that a prosecutor would
transpose the conditionals, it is in fact a mistake which can easily be unintentionally made by
prosecutors, defence council, judges, jury members, journalists, and forensic practitioners. A way
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to help avoid making this mistake is to always ask: What is the evidence and what are the
hypotheses? Substitute “number of legs” for the evidence, and “cow” versus “not cow” for the
hypotheses. Then decide whether the statement is of the form “probability of legs given cow versus
not cow”, or of the form “probability of cow versus not cow given legs” or “probability of cow
given legs”. If it is one of the latter two and it is what the forensic practitioner said or an
interpretation of what the forensic practitioner said, then it is probably an example of the
prosecutor’s fallacy.

[99.390] The defence attorney’s fallacy
Forensic Practitioner:

One would be one thousand times more likely to obtain the measured acoustic properties
of the voice on the questioned-speaker recording had been produced by the accused than if
it had been produced by some other adult male Australian-English speaker.

Defence attorney:

So, given that there are approximately a million adult male Australian-English speakers in
the region and assuming initially that any one of them could have made the intercepted
telephone call, we begin with prior odds of one over one million, we multiply by one
thousand and arrive at posterior odds of one over one hundred thousand (1/1,000,000 x
1000 = 1/100,000). One over one hundred thousand is a very small number. Since it is one
hundred thousand times more likely that the voice on the telephone intercept was that of
an adult male Australian-English speaker other than my client than that it is the voice of
my client, | submit that this evidence fails to prove that my client was the speaker on the
intercepted telephone call and as such it should not be taken into consideration by the jury.

The logic of the defence attorney’s fallacy is correct until the final conclusion. What the defence
attorney’s fallacy does is ignore all other evidence presented at trial so as to imply that a particular
piece of evidence is of no value. In fact, the likelihood ratio should have shifted the trier of fact’s
beliefs by a factor of 1000, which is not insubstantial. By itself it may not be enough to convince
the trier of fact that the same-origin hypothesis is true, but when the trier of fact weighs all the
evidence, it may make a substantial contribution.

Different types of evidence (e.g., DNA, fingerprints, voice recordings) can reasonably be assumed
to be statistically independent, and if they all address the same same-origin versus different-origin
hypotheses, the likelihood ratios can be multiplied together. The prior odds plus the likelihood
ratios can be multiplied in any order, it makes no difference mathematically. If we started out with
prior odds of 1/1,000,000 and then heard four pieces of evidence, each with a likelihood ratio of
1000, the defence attorney’s fallacy would argue that each piece of evidence should be dismissed,
but the posterior odds would be 1/1,000,000 x 1000 x 1000 x 1000 x 1000 = 1,000,000 (in logo:
—6 + 3 + 3 + 3 + 3 =+6). Posterior odds of one million may well lead the trier of fact to conclude
that the same-origin hypothesis is true (and that the different-origin hypothesis false).

The term “defence attorney’s fallacy” is used since the outcome of committing the fallacy is
usually advantageous to the defence, but the mistake can be unintentionally made by defence
council, prosecutors, judges, jury members, journalists, and forensic practitioners.
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[99.394] The trier of fact’s fallacy
Forensic Practitioner:

One would be one billion times more likely to obtain the DNA profile of the blood found
at the crime scene had it come from the accused rather than from another individual in the
country unrelated to the accused.

Trier of Fact (thinking):

One billion is a very big number. The blood must have come from the accused. He must
be guilty. I can ignore the other evidence.

There are several counts on which, in this example, the trier of fact’s logic is fallacious. The
defendant could be innocent and the true offender could be a relative of the defendant (a likelihood
ratio given a relevant population of close relatives would be much smaller), or there could have
been a mistake leading to contamination, miscalculation, or misreporting. The likelihood ratio
quoted addressed source level propositions: same-origin versus different-origin. It did not address
activity level (how the blood got to be at the crime scene) or offence level (whether the accused
is guilty or a crime or not). The blood could be that of the defendant without the defendant having
committed the crime. For example, the defendant may have been present at the crime scene,
attempted to prevent the crime from being committed and ended up shedding blood in the process.
These may be issues considered by the court, but they were not addressed by the forensic
scientist’s source-level conclusion.

Even if none of the above were true, there is still a fallacy in the trier of fact’s reasoning. The
likelihood ratio presented by the forensic practitioner is probabilistic, not definitive. Even though
the value of the likelihood ratio is very large, it is not infinite. This means that other evidence
could potentially outweigh even this very large likelihood ratio. What if eye witnesses stated that
the defendant did not resemble the person they saw committing the crime, and the defendant had
a very strong alibi? This is not forensic science evidence and it does not come with a numeric
likelihood ratio attached, but the trier of fact should consider whether the other evidence outweighs
even the very strong DNA evidence. The trier of fact may still decide that the defendant is the
source of the blood, but they should do so after considering the weight of all the relevant evidence
presented to them, and not prematurely jump to a conclusion.

We have coined the term “trier of fact’s fallacy” for this mistake. It could also be called the “large
number fallacy”, and be considered the inverse of the defence attorney’s fallacy which could be
called the “small number fallacy”. As with the prosecutor’s and defence attorney’s fallacies, it can
potentially be made by various actors, not just triers of fact. Indeed, there is a version of this fallacy
where the forensic practitioner obtains a very large number and rounds it up to a probability of 1
(100%) and declares an “identification”, or obtains a very small number and rounds it down to a
probability of 0 (0%) and declares an “exclusion”. In such circumstances, it would be better called
the “forensic practitioner’s fallacy”.

[99.398] Further Reading

The terms prosecutor’s fallacy and defence attorney’s fallacy were coined by Thompson &
Schumann (1987). They are also described in Robertson et al. (2016, ch. 9) and Balding & Steele
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(2015, ch. 11). Hicks et al. (2016) includes advice on how to avoid the prosecutor’s fallacy.
Koehler (2014) discusses instances of fallacies found in some actual legal rulings.
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HUMAN VOICES
(A BRIEF INTRODUCTION TO PHONETICS)

[99.440] Introduction

Phonetics is the study of the physical aspects of the production, transmission, and perception of
human speech. This section provides a brief introduction to articulatory and acoustic phonetics,
which cover the production and transmission of speech. The intent is to provide the reader with a
basic understanding of some of the phonetic terms and concepts which may be used in reports on
forensic voice comparison or disputed utterance analysis. It is recordings of acoustic speech
signals which are measured and analysed in forensic voice comparison.

This introduction is not meant to be exhaustive. Suggestions for further reading are given in
section [99.560].

[99.450] Vocal tract

Humans make speech sounds using their vocal tracts. The vocal tract is essentially a tube
consisting of the mouth (oral cavity) and throat (pharyngeal cavity), with the lips at one end and
the larynx at the other (the vocal folds are in the larynx), see Figure 15 (this is an X-ray of Philip
Rose with the vocal tract highlighted). The length of the tube can be slightly increased by rounding
and protruding the lips and by lowering the larynx (raising the larynx will slightly shorten the
tube). The nose forms another tube (nasal cavities from the nostrils to the velopharyngeal port)
which can be connected to the oropharyngeal tube (pharyngeal cavity plus oral cavity) by
lowering the soft palate (velum) to open the velopharyngeal port, see Figure 15. The jaw can be
lowered or raised and the tongue can be moved to change the shape of the oropharyngeal tube.

FIGURE 15. X-ray and tracing of a vocal tract.
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[99.460] Vowels
[99.461] Description

The vocal tract is similar to a musical instrument, a wind instrument such as a clarinet or a
trombone. To play these instruments, one must blow air into them. Air is blown into the vocal
tract by compressing the lungs so as to push air between the vocal folds. However, simply blowing
into a trombone will not make a musical sound, one has to “blow a raspberry” forcing air between
ones lips so that they vibrate, opening and closing many times per second. Similarly, a reed needs
to be fitted to the mouthpiece of a clarinet so that when one blows into the mouthpiece the reed
vibrates. In the same way, to make a voiced sound (including a vowel), one has to hold one’s vocal
folds together and under tension so that when air is forced between them they vibrate, opening
and closing many times per second (see section [99.540]). Note that, as one can open one’s lips
and not “blow a raspberry”, one can open one’s vocal folds and not make a voiced sound; in fact,
the latter is the normal state when one is breathing.

To verify that the difference between a voiced and a voiceless sound is the vibration of the vocal
folds, put your fingers on your throat, in front of your larynx, and say “zzzzzzzzz”. This is a voiced
sound, you should be able to feel the vibration with your fingers. Next say “ssssssss”. This is a
voiceless sound, you should not be able to feel vibration with your fingers. Now try saying “buzz”
and “bus” — in both cases the vowel is voiced but the following consonant in “bus” isn’t voiced
and the vibrations should stop sooner in “bus” than in “buzz”.

To get different notes out of a trombone you have to move the slider, which changes the length of
the tube. To get different notes from a clarinet you have to open and close holes — the length of
the tube is the distance from the mouthpiece to the nearest open hole. When the tube is longer the
note sounds lower, and when the tube is shorter the note sounds higher — also think about long
tubes and short tubes in a pipe organ. The difference in the notes of a wind instrument are usually
not caused by differences in the rate of vibration at the mouthpiece, rather they are caused by
differences in the length of the tube which cause the tube to have different resonance frequencies
(frequencies at which the sound is amplified) — longer tubes have lower resonance frequencies
and shorter tubes have higher resonance frequencies.

The resonance frequencies of a simple tube can be easily calculated mathematically, one only
needs to know the length of the tube and the speed of sound (the cross-sectional area of the tube
also has a small effect). Tubes have multiple resonances, not just one, and a simple tube 16 cm in
length (about the average length of adult-human vocal tracts) will have resonances at about 500 Hz,
1500 Hz, 2500 Hz, etc. The amplitude (loudness) of the resonances gets less as the frequency gets
higher.

The resonance frequencies of vocal tracts are usually called formants. Although a human can
increase the length of their vocal tract by rounding and protruding the lips and by lowering their
larynx, this increase in length is limited and the primary way in which a human changes the
resonance frequencies of their vocal tract is by lowering or raising their jaw and moving their
tongue. Part of the tongue is moved towards part of the roof of the mouth or the back of the throat
causing a constriction in the oropharyngeal tube. The vocal tract is then a complex-shaped tube
rather than a simple tube. In a simple description of the complex tube, the location, length, and
cross-sectional area of the constriction, and the concomitant lengths and cross-sectional areas of
the parts of the tube behind and in front of the constriction, determine the resonance frequencies
of the vocal tract.

Morrison, Enzinger, Zhang 48 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

Try saying the vowel sound “ee” from the word “heed”, keep saying it, don’t stop. Your jaw is
probably quite high and the front-to-middle part of your tongue is probably quite close to the roof
of your mouth. Now slowly open your mouth and lower your tongue — you should hear the “ee”
sound change to sound like the vowel sounds in “hid” then “head”, then “had” (how well the
sounds correspond with these words may depend on your accent). The different mouth shapes
result in different resonance frequencies which make the sound of different vowels. The primary
acoustic differences between the vowels in “heed”, “hid”, “head”, and “had” are that the first
formant (F1) increases as the constriction widens and second formant (F2) decreases.

Now say the “ee” sound from “heed” again, but this time move your tongue back until you are
saying the vowel sound from “who” — you have probably also gone from spread lips (like smiling)
to rounded lips (in Figure 15 the speaker is saying the vowel sound of “who”). It turns out that
moving your tongue back in your mouth lowers F2 and that rounding your lips also lowers F2, so
doing both together has a larger effect. The most important acoustic difference between the vowel
sounds in “heed” and “who” is the change in F2 (F1 stays about the same).

The phonetic symbols of the International Phonetic Association (IPA) <https://www.international
phoneticassociation.org/content/ipa-chart> can be used to represent many speech sounds, and
diacritics (extra smaller symbols put above, below, or after a main symbol) can be used to
represent small differences between speech sounds. The symbols for the vowel sounds in “heed”,
“hid”, “head”, “had”, and “who” are /i/, I/, le/, [/, and /u/ respectively. Slashes / / are put around
phonetic symbols in broad transcription, indicating the sounds which contrast in a given language
or dialect (phonemes), and square brackets [ ] are used to indicate finer phonetic detail in a narrow
transcription, e.g., “buzz” /baz/ may be realised as [ba:s], the vowel is long ([:] is the diacritic for
long duration) and the vocal folds do not actually vibrate during the final consonant. “Bus” /bas/
would be [bas], without a long vowel, hence the actual difference in pronunciation of “buzz” and
“bus” may be vowel length, not presence of absence of vocal fold vibration during the final
consonant.

Figure 16 shows the spectra (singular: spectrum) of the vowels /i/, /e/, and /u/ (spoken by
Morrison). Frequency is on the x axis and amplitude on the y axis. These spectra were measured
at a point in time 25% of the way between the beginning and the end of the vowel. The jagged red
lines are raw measurements and the blue lines are smoothed measurements. The peaks in the
smooth lines are the measured formants, the first two peaks from the left are F1 and F2. Note that
for /e/ F1 is higher and F2 lower than for /i/, and for /u/ F1 is about the same but F2 is much lower
than for /i/. Note that there are also other differences in the shape of the spectra.

In many languages F1 and F2 peaks are the primary acoustic indicators of vowel category (vowel
phoneme) identity (the peak formant values rather than the exact shape of the spectra are
perceptually relevant), and vowels are often graphically represented via a two-dimensional plot of
F1 and F2 as in Figure 17 (vowels spoken by Morrison). This plot has arrows pointing from
measurements taken at 25% of the duration of the vowel to measurements taken at 75% of the
duration of the vowel. Some vowels have very little formant movement, and others have
substantial formant movement, the former are known as monophthongs, and the latter as
diphthongs, for example, the vowel /ai/ as in the word “hide” starts off with high F1 and
intermediate F2, somewhere between /&/ and /a/ (the vowel in “had” versus the first vowel in
“father”), and ends up with a low F1 and a high F2, somewhere between /i/ and /i/ (the vowel in
“hid” versus the vowel in “heed”). In a broad Australian-English accent /ai/ may be realised as [o1]
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rather than [ar], and in a Canadian-English accent “hide” may be realised as [har:d] ([, ] is the
voiceless diacritic) but “height” as [hait].

FIGURE 16. Spectra of vowels /i/, /e/, and /u/.
F1 .
\/ 1l

F2

60

40/

A |

Amplitude (dB)

/el
8 F2

404

Amplitude (dB)

201

F1 fu/

601 F2

401

Amplitude (dB)

204

N /\/
3 4

2
Frequency (kHz)

Morrison, Enzinger, Zhang 50 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

FIGURE 17. Plot of F1 and F2 measurements of a set of English vowels.
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Another graphical method for representing the acoustic speech signal is a spectrogram. A
spectrogram is made by measuring the spectrum of the speech signal every few milliseconds, then
lining those spectra up in order so that time is on the x axis and frequency is on the y axis. On a
three-dimensional plot amplitude can be represented on the z axis (this is called a waterfall plot),
but it is more common to produce a two-dimensional plot with darkness of a monochrome scale
or colours on a multi-coloured scale used to represent amplitude. Spectrograms can represent fine
details of the acoustic signal across time, frequency, and amplitude. Figure 18 provides an example
of a colour spectrogram of a token of the diphthong /ai/ spoken by an adult male speaker of
Australian English. The highest amplitudes are in dark red, and the lowest in dark blue.
Measurements of the first two formant peak frequencies have been overlaid.

In addition to F1, F2, and diphthongisation, vowel duration can be an important cue to vowel
phoneme identity in English. For example, in addition to spectral differences, all else being equal,
fil is longer than /1/ in most dialects of English. In some languages, such as French, other acoustic
properties such as third formant (F3) and nasalisation (see section [99.480]) can be important for
vowel phoneme identity.

In English, vowels can be stressed, in which case they are relatively long and have well defined
formant values, or they can be non-stressed in which case they are relatively short and the vocal
tract approximates a rest position or the position needed to make the preceding or following speech
sounds, which results in some degree of neutralisation of the vowel’s formant values. The ultimate
non-stressed vowel is schwa [a] for which the original identity of the vowel phoneme is lost, for
example, the second vowel in “photograph” is realised as a schwa as are the first and third vowels
in “photographer”.
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FIGURE 18. Spectrogram of /ax/.

[99.470] Potential forensic value

The acoustic properties of speech will be useful forensically to the extent that they have relatively
large between-speaker variation and relatively small within-speaker variation.

From the discussion above, it should be clear that vocal-tract length has a major effect on formant
frequencies; men generally have longer vocal tracts than women but there is also variation within
each sex. Additional anatomical differences in the shape of the vocal tract and idiosyncrasies in
control of the muscles of the tongue, lips, etc. may also be reflected in vowel spectra. Speakers
may also exhibit idiolectal differences which are more subtle versions of the sort of dialectal
differences mentioned above. Acoustic properties which are not important for vowel phoneme
identity, such as the higher formants (F3 and above) and the shape of the whole spectrum, may
also contain information which can help differentiate speakers.

Although there may be a great deal of anatomical and idiosyncratic variation between speakers,
the ability of a forensic voice comparison system to exploit this may be limited. Much of the
information may not be available or may not be extractable from the acoustic signal. Transmission
of the acoustic signal through a telephone system will alter the shape of the spectrum and,
depending on the vowel phoneme, may make both F1 and higher formants unusable, see section
0. Also, unlike DNA profiles or fingermarks, intrinsic within-speaker variability of many of the
acoustic properties of speech may be very high.

[99.480] Nasals
[99.481] Description

Nasals, such as /m/, /n/, and /y/ (the last sound in “sum”, “sun”, and “sung” respectively) are made
by producing voicing, opening the velopharyngeal port so that air can flow through the nasal
cavities (see Figure 15), and making a closure in the oral cavity. The velopharyngeal port is also
held open when one is breathing through one’s nose, but without making a speech sound. The
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tracing of the nasal cavities in Figure 15 is greatly simplified, and in reality the shape of nasal
cavities is very complex, including several side-branches (sinuses).

For /m/ the lips are held together and the oral cavity is a relatively long side-tube on the
nasopharyngeal tube (nasal cavities plus pharyngeal cavity). For /n/ the tip and blade of the tongue
(see Figure 15) are held against the alveolar ridge to make a closure and the oral cavity tube is
shorter than for /m/. If you put the tip of your tongue on your upper lip, then gradually move it
backwards past your upper incisors and gums and keep going, you get to a ridge near the front of
the roof of your mouth, this is the alveolar ridge (see Figure 15). For /y/ the closure is made
between the dorsum of the tongue and the velum (see Figure 15), and the oral cavity tube is very
short.

The acoustic differences in the spectra of nasals, which makes them sound different, is due to the
different anti-resonances of the different lengths of the oral-cavity tube. Rather than adding a
resonance, a closed side-tube to a main-tube subtracts an anti-resonance. Figure 19 shows the raw
spectra of /m/ and /n/ compared to /n/. The latter is a nasal where the closure is a little further back
than for English /n/ such that the length of the oral cavity side-tube is zero — Figure 19 therefore
compares the spectrum of the nasopharyngeal tube with the spectra of the nasopharyngeal tube
plus the different-length oral-cavity side-tubes. The first anti-resonance for /m/ can be seen as the
lower amplitude of the /m/ spectrum compared to the /n/ spectrum at around 750 Hz, for /n/ the
anti-resonance is more pronounced and occurs at and just above 1 kHz. For both /m/ and /n/, the
spectra above the first anti-resonance are also shifted down in frequency relative to the /~n/
spectrum.

FIGURE 19. Spectra of nasals /m/ and /n/ compared to /N/.
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Both the nasal and oral cavities can be open at the same time, i.e., the velopharyngeal port is open
and there is no closure in the oral cavity. When there is also voicing from the vocal folds, this
results in a nasalised vowel. The spectra of nasalised vowels can be quite complex because both
the oral and nasal cavities contribute resonances and anti-resonances. In some languages, such as
French, nasalised and non-nasalised (oral) vowels serve as different phonemes, a word containing
the nasalised version of the vowel has one meaning and an otherwise phonemically identical word
with the oral version of the vowel has another meaning, e.g., “matais” /mate/ form of verb TO
SUBDUE and “matin” /mat&/ MORNING ([ "] is the nasalisation diacritic). In English, nasalisation
does not distinguish phonemes but vowels preceding nasals are often nasalised — the velum is
lowered during the vowel in preparation for saying the nasal consonant. When articulations for
making one speech sound overlap with the articulation of earlier or later speech sounds, this is
known as coarticulation.

[99.490] Potential forensic value

Nasal cavities are very complex with potentially large between-speaker variability leading to the
potential for large between-speaker variability in their acoustic spectra. Nasal cavities are static
structures and hence have essentially no within-speaker variability, but the degree of opening of
the velopharyngeal port can be varied and this will affect the acoustic spectra. Nasal congestion
due to colds or allergies will also affect the acoustic spectra. Mobile-telephone systems do not
explicitly encode anti-resonances and parts of the acoustic spectra of nasals may be lost, see
section [99.610].

[99.500] Fricatives
[99.501] Description

Most dialects of English have five voiceless fricatives, the first sound in each of “fish” /f/, “thick”
10/, “sip” /s/, “ship” /f/, and “hip” /h/, and four voiced fricatives, the first sound in each of “villa”
I, “the” 18], “zip” /z/, and “genre” /3/ (the latter sound is more common in the middle of words
like “pleasure”). Scottish English has an additional voiceless fricative /x/, the last sound in the
Scottish word “loch”.

Fricatives are produced by making a constriction in the vocal tract, which is narrower than the
constriction for making a vowel, and forcing air through the constriction quickly so that it makes
a noise. The noise is the result of turbulent airflow — imagine a wide deep slow moving river, this
has laminar flow (the airflow for making vowels and nasals is also laminar), now imagine a
shallow fast-flowing river with lots of white water, this is turbulent flow.

The difference between the voiceless and voiced fricatives is that the vocal folds are vibrating for
the voiced fricatives and held open for the voiceless fricatives.

[fl and /v/ are produced by forcing air between a constriction made by holding the lower lip on the
upper incisors — the air escapes between the teeth and out the sides of the lips. For /6/ and /0/, the
tip of the tongue is held against the upper incisors. For /s/ and /z/, the turbulence is caused by
shaping the tongue so as to aim a jet of air at the upper incisors. For /f/ and /3/, the turbulence is
caused by shaping the tongue so as to aim a jet of air at the lower incisors. /h/ is produced by
holding the vocal folds close together and forcing air through the narrow opening between them.
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Fricatives cause the resonances of the vocal tract to be excited but by a noise source, rather than
by periodic voicing as is the case for vowels. /h/ can actually be analysed as a voiceless vowel
rather than a fricative, e.g., /hi/ is [ji] and /he/ is [ge] — if you whisper you are also producing
voiceless vowels. For /s/ and /f/, the shape of the vocal tract is, however, quite different from any
vowel and the source of the noise is near the front of the mouth rather than at the vocal folds. Since
the source of the noise for /f/ and /6/ is produced right at the opening of the mouth, the resonances
of the vocal tract have little effect on their acoustic spectra. Smoothed spectra of English voiceless
fricatives (spoken by Morrison) are shown in Figure 20.

FIGURE 20. Smoothed spectra of English voiceless fricatives.
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°
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[99.510] Potential forensic value

With the exception of /s/ and /f/, fricatives are relatively quiet. This can make them difficult to
measure if there is any background or channel noise. /f/ and /6/ have similar spectra (see Figure
20) which can make them difficult to distinguish perceptually, and much of the spectral difference
between /s/ and /f/ occurs in the higher frequencies (see Figure 20) which are usually lost in
telephone transmission, see section [99.610]. The spectra of fricatives may be too much affected
by telephone transmission to make them particularly useful for forensic voice comparison.

[99.520] Plosives
[99.521] Description

English has three voiced and three voiceless plosives made using complete closures of the vocal
tract at the lips (e.g., the first sounds in “bat” /b/ and “pat” /p/), at the alveolar ridge (e.g., the first
sounds in “dip” /d/ and “tip”/t/), and at the velum (e.g., the first sounds in “gap” /g/ and “cap” /k/).
First a closure of the oral cavity and a closure of the velopharyngeal port are made. Then the lungs
are compressed to pump air into the oropharyngeal tube, increasing the air pressure behind the
closure in the oral cavity. Finally the oral closure is released and a burst of air escapes.

For English utterance-initial voiced plosives, the vocal folds usually begin vibrating just after the
oral closure has been released. For English utterance-initial voiceless plosives, the vocal folds
don’t usually begin vibrating until at least 30 ms after the oral closure has been released, and there
is turbulent airflow before voicing begins, this is called aspiration. The phonetic details of
utterance-initial English plosives are therefore, for example, /b/—[p] and /p/—[p"] ([*] is the
aspiration diacritic). The time between the release of the oral closure and the beginning of voicing
is called voice-onset time (VOT).
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The acoustics of plosives include the release burst, aspiration, and formant transitions. The
formant transitions reflect the change in the shape of the mouth from the closed position of the
plosive to the relatively open position of the adjacent vowel. Formant transitions are different for
different places of articulation of the plosive, bilabial (lips), alveolar, and velar, but also depend
on the shape of the mouth needed for the adjacent vowel, and hence the characteristic formants of
the adjacent vowel. Formant transitions may be measurable during the aspiration stage as well as
the voiced stage (see discussion of /h/ in section [99.500]). An utterance-final plosive may not
have an audible release burst and the formant transitions from the preceding vowel may be the
only acoustic indication that a plosive was made.

[99.530] Potential forensic value

Acoustic properties of plosives such as VOT and formant transitions could potentially be used for
forensic voice comparison, but since they are dependent on both the plosive phoneme and the
vowel phoneme they would probably be most effective for particular plosive-vowel or vowel-
plosive sequences. These sequences would form phonetic units longer than a single phoneme and
may have less variability. For example, if there are enough tokens of “day” in the known- and
questioned-voice recordings then using the whole of the formant trajectory from the /d/ transition
through the /ey may be more effective than using a collection of /er/ tokens from multiple
consonantal environments.

[99.540] Laryngeal activity
[99.541] Description

The rate at which the vocal folds vibrate during voicing is known as the fundamental frequency
(f0). Some speakers have longer and more massive vocal folds and others have shorter and less
massive vocal folds. On average adult males have larger vocal folds than adult females but there
is also variation within each sex. All else being equal, larger vocal folds vibrate at a lower f0 and
smaller vocal folds vibrate at a higher fO (think of long fat piano wires and shorter thinner piano
wires). Fundamental frequency averages around 125 Hz for adult males and 200 Hz for adult
females.

A speaker can stretch and tighten and lengthen their vocal folds or relax and slacken and shorten
them. The tightening and slackening is like turning the tuning peg on a stringed instrument or
stretching a rubber band. When the vocal folds are longer and tighter, they vibrate at a higher
frequency. Although all else being equal longer strings vibrate at a lower frequency than shorter
strings, a string which is longer because it has been stretched vibrates at a higher frequency than
the same string when it is shorter because it is slacker.

Humans can have quite fine control over their f0, and it is fO values, not formant values, which
correspond to notes in singing. In some languages, such as Standard Chinese (Mandarin), fO is
used to distinguish phonemes, e.g., &5 (traditional character) 42 (simplified character) “ma” /mal/
MOTHER with a steady high f0, and % (traditional character) % (simplified character) “ma” /ma\/
scoLp with a falling fO ([1] and [\] indicate the fO patterns). The different fO patterns are called
tones. English does not use f0 to distinguish phonemes but does use it to signal other differences
such as increasing f0 towards the end of an utterance to indicate a question “it’s three o’clock?”
versus lowering it to indicate a statement “it’s three o’clock”. This use of f0 is called intonation.
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In addition, fO can signal a speaker’s emotional state — Someone who is depressed may speak with
a low frequency monotone, whereas someone who is excited may use a wide range of frequencies
including high frequencies.

Voicing is caused by the speaker holding their vocal folds together and under tension, and
compressing the lungs so that the air pressure below the vocal folds is higher than above the vocal
folds. The increased air pressure pushes on the bottom of the vocal folds and eventually forces
them to open. Air then escapes through the gap between the vocal folds and the air pressure below
the vocal folds decreases. The air escaping between the vocal folds pulls them back together. This
is due to an aerodynamic effect — the same effect causes an open door to slam shut if a wind blows
through it. The elasticity of the vocal folds also pulls them back together. Once the vocal folds are
closed the pressure below them begins to rise again and the opening and closing cycle repeats.

Different speakers may differ not only in the frequency at which their vocal folds normally vibrate
but also in other aspects of voicing. The relative amount of time in each cycle during which the
vocal folds are open versus closed (open quotient versus closed quotient) may differ. The
vibrations are unlikely to be perfectly regular and speakers may differ in the degree to which the
amplitude of voicing varies across cycles (shimmer) and the degree to which the duration of
individual cycles varies (jitter). It is possible to produce voicing without complete closure of the
vocal folds, in particular a gap may be left between the arytenoid cartilages at the back of the
vocal folds (see Figure 15). If there is turbulent airflow through this gap, breathy voicing is
produced. Some speakers may have a habitually breathy voice (Marilyn Monroe was famous for
having a breathy voice). Holding the vocal folds tight together but with little tension results in
irregular voicing which can be half the frequency of normal voicing. This is called creaky voice.
Some speakers may have a habitually creaky voice (Louis Armstrong was famous for having a
creaky voice, although his singing style may have actually used another type of voicing known as
ventricular). Damage to the vocal folds can cause habitual creaky voice. Some speakers have
temporary creaky voice if they have not spoken for a long time, such as when they first speak in
the morning. In some languages and dialects, such as Northern Vietnamese, creaky voice signals
a phonemic contrast, e.g., “mi” /mi%¥/ [mi®**] WHEAT and “mi” /mi?Y/ [mi?'] coax ([_]is the
diacritic for creaky voice and the numbers indicate the tones — historically the lowest tones have
become creaky). Creaky voice has also been noted as a sociolinguistic marker for younger
Australian English speakers and younger female American English speakers (including Scarlett
Johansson when playing American, but not British, characters; Shaw & Croker, 2015).

[99.550] Potential forensic value

Given the large within-speaker variation in f0, acoustic properties such as mean f0 are not expected
to be particularly useful for forensic voice comparison. Properties such as the shape of fO
trajectories (changes over time) on tones or intonation patterns may have some value. Properties
such as jitter may be more closely related to the physiology of the vocal folds and may have lower
within-speaker variation, but be difficult to extract from anything other than high-quality audio
recordings.
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[99.560] Further reading

There are number of introductory phonetics textbooks available. Since its first edition in 1975,
Ladefoged & Johnson (2014) has probably been the most widely read phonetics textbook. A
different perspective from the same first author is given in another introductory textbook,
Ladefoged & Disner (2012). Rogers (2000) includes a chapter describing a number of different
dialects of English. Rose (2002) includes an introduction to phonetics as part of an introduction
to forensic voice comparison.
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VOICE RECORDING, TRANSMISSION,
AND STORAGE

[99.600] Voice recording

Almost all audio recording is now digital, and if an analogue recording were presented for forensic
voice comparison it would be digitised before analysis. Sound is a pattern of vibrations in the air.
When the vibrations hit a microphone, part of the microphone vibrates and produces an analogue
electrical signal. This analogue electrical signal is then converted to a digital signal.

There are two factors affecting the quality of the digitisation itself: sampling frequency, and
quantisation resolution (sampling frequency multiplied by quantisation resolution gives bit rate).
Sampling frequency refers to the number of times per second a measurement (a sample) is taken.
Typical high-quality sampling rates are 44.1 kHz or 48 kHz, which can be used to record audio
frequencies up to 22.05 kHz or 24 kHz respectively. This is more than adequate for most audio
recordings because humans cannot hear frequencies above about 20 kHz and this upper threshold
decreases with age (for more on human hearing see Hearing and the perception of sound [69],
Alias, 2015). Quantisation resolution refers to the number of binary digits (bits) used to encode
the intensity of the signal at each sample. The higher the quantisation resolution, the more detailed
the representation of intensity can be and the better the recording quality. A common quantisation
resolution is 16 bits which allows 65 536 different levels of intensity to be encoded. Each sample
has an intensity value and moving from one sample to the next the intensity value usually changes.
At low sampling frequencies and low quantisation resolutions, there can be big steps from sample
to sample, but at high sampling frequencies and high quantisation resolutions the steps are very
small and approximate smooth transitions.

There are a number of additional factors which can affect recording quality. The speaker may be
far from the microphone, or talking quietly, or there may be an object between the speaker and
the microphone, in which case the electrical signal produced by the microphone in response to the
acoustic signal of the speaker’s voice may be of low amplitude, and when digitised the signal may
only use a small part of the possible range of quantisation values. If there are other noises in the
place the recording is being made, these may be loud relative to the acoustic signal from the
speaker’s voice hitting the microphone and both will be combined on the audio recording, with
the noises partially obscuring the speaker’s voice (a low signal to noise ratio). Analogue
components of recording systems, including microphones and amplifiers, produce their own
electrical noise which will also form part of the recording. Turning up the gain on a microphone
to compensate for a quiet audio signal may not work well because any acoustic noise and the
electrical noise of the system will also be amplified.

On the other extreme, if the speaker’s voice is too loud, or the gain on the microphone is too high,
the electrical signal may exceed the maximum and minimum values which can be digitally
encoded and the highest amplitude parts of the signal are truncated. This is a phenomenon known
as clipping, and results in the recording sounding fuzzy (a fuzz box attached to an electric guitar
deliberately causes the signal to be clipped).

Different microphones and recording systems can have different frequency responses to the same
acoustic signal, and the distance and angle of the speaker’s mouth relative to the microphone and
reflections of the sound off walls etc., can also result in differences in the frequency envelope of
the recorded signal (such differences are collectively known as channel effects). Since known-
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and questioned-speaker recordings may be made on different recording systems under different
recording conditions, this can introduce a source of variability which is conflated with within- and
between-speaker variability.

Background noise is common on casework recordings. There are many different sources of
background noise, e.g., ventilation systems, multiple other speakers speaking at once (babble),
music, traffic, machinery. The particular type of background noise and signal to noise ratio often
differs between the known- and questioned-speaker recordings. Known-speaker recordings are
often recordings of interviews made in small rooms with hard walls — this results in substantial
reverberation (echoes).

Degradation in speech signal information in the recording due to recording channel effects,
background noise, and reverberation, and mismatches in recording conditions between the known-
and questioned-speaker recordings leads to deterioration in the performance of forensic voice
comparison systems.

[99.610] Voice transmission and storage

In forensic voice comparison casework, questioned- and/or known-voice recordings are often
recordings of telephone conversations. Telephone systems introduce additional channel effects,
which degrade the quality of the speech signal information and can be a source of variability
between recordings.

Landline-telephone systems are now usually digital (at the level of the local exchange if not at the
level of every handset), and the signal is usually digitised at a sampling frequency of 8 kHz with
a bit rate of 64 kbits/s (quantisation resolution is 8 bits, i.e., 256 levels of intensity). Landline
telephone systems only transmit frequencies between about 300 Hz and 3.4 kHz (this is known as
a bandpass) and distort frequencies close to the edges of the bandpass. The bandpass is
superimposed on the spectrum of the incoming audio signal. Some vowels such as /i/ and /u/ have
intrinsically low F1 which for male speakers may be affected by the low end of the bandpass. F3
and above for females and F4 and above for males are likely to be affected by the high end of the
bandpass. Although fO falls below the low end of the bandpass, O is recoverable from other parts
of the spectrum (harmonics, which occur at multiples of the fO value).

Mobile-telephone systems also apply a bandpass to the signal; the low end of the bandpass is
maintained at 100 Hz (lower than for a landline system), and the high end varies between 2.8 kHz
and 3.6 kHz. But in addition, mobile systems use compression and decompression algorithms
(codecs) to reduce the amount of data sent, and this results in further deterioration of the signal.
Some information in the signal is lost because the codecs are designed to reduce the amount of
information sent by only keeping information which is most important for speech intelligibility.
Some of the information lost may be information which would otherwise have been useful for
forensic voice comparison. Since mobile telephone handsets have to communicate with base
stations via radio transmissions, the quality of the transmission is affected by the presence of
obstacles such as buildings between the handset and the nearest base station. Quality may also be
affected by the number of users requesting service from that base station. Quality can change
within a few seconds (in theory it could change every 20 ms), and, if the user is on the move,
quality can change within a few metres. The signal is not sent continuously, but rather it is cut up
into packets and each packet is sent in turn. Sometimes entire packets may be lost, but the system
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tries to ensure that as many packets as possible are received by lowering the amount of information
about the speech signal in each packet, which reduces the quality of the transmitted signal. Bit
rates can vary between 4.75 and 12.2 kbits/s, much lower than for a landline. Quality is dependent
on the bit rate used to encode the signal. Occasional missing packets may be replaced by the
immediately preceding packets.

Direct-to-satellite mobile-telephone systems compress the speech data more than terrestrial
mobile-telephone systems leading to an even greater loss of information.

Voice-Over-Internet-Protocol (VolIP) systems, such as Skype, are broadly similar to mobile-
telephone systems, but potentially have a wider bandpass and use higher bit rates. They can
therefore transmit a higher quality signal than mobile-telephone systems and the problems in
quality are associated with routing the information through the internet rather than with radio
communication between handsets and base stations. In some parts of the world some user’s
landline telephones have been replaced by VolP systems, especially in office environments. The
service provider may provide dedicated bandwidth to avoid the worst quality problems that can
sometimes plague free peer-to-peer systems such as Skype. Frequent users of such systems are
aware that the quality can range from excellent to unintelligible.

Mobile telephone systems and VolP systems use what are called lossy codecs. Information that
was in the original signal is lost, and cannot be recovered. Various formats for saving or storing
audio recordings also use lossy codecs. The most famous lossy codec for audio recordings is
probably MP3, but there are many others in use. Video recordings which include an audio track
may also compress the audio signal using a lossy codec. Lossy codecs are used so that recordings
take up less storage space, or to allow files to be sent to or retrieved from remote servers more
quickly, including live streaming.

Channel effects, especially lossy codecs used for transmission and/or storage, lead to deterioration
of the speech signal information in the audio recording. Poor quality channels and mismatches in
channels lead to deterioration in the performance of forensic voice comparison systems.

[99.620] Further reading

For a more detailed relatively non-technical description of different telephone systems, see
Guillemin & Watson (2008).
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APPROACHES TO FORENSIC VOICE
COMPARISON

[99.650] Introduction

Historically there have been four basic approaches to forensic voice comparison: auditory,
spectrographic, acoustic-phonetic, and automatic. What we mean by approach is a general
method for extracting information from voice recordings for the purpose of conducting forensic
voice comparison. To a greater or lesser extent the approach can be independent of the framework
for inferring the strength of the evidence. For example, the acoustic-phonetic and automatic
approaches can be characterised as general ways of turning acoustic information into numbers,
which could then be evaluated using the likelihood-ratio framework or using a posterior-
probability framework. In this section, each of the approaches is described and then evaluated
with respect to its compatibility with the new paradigm.

[99.660] Auditory approach and auditory-acoustic phonetic approach
[99.661] Description

The auditory approach is practised by phoneticians with training and experience in auditory
phonetics. This would include the ability to use phonetic symbols and diacritics to transcribe the
speech sounds which they hear. The practitioner listens to the known- and questioned-speaker
recordings and notes similarities and differences. The practitioner notes similarities which they
would expect to observe if the recordings were of the same speaker but not if they were of different
speakers, and differences that they would expect if the recordings were of different speakers but
not if they were of the same speakers.

Audible features which are exploited could be the sorts of differences which distinguish dialects,
e.g., consider how the word “height” (phonemically transcribed /hait/) would be pronounced by
English speakers from the US Mid-West, Southern US, Central and Western Canada, and
Australia (in phonetic transcription these could be [hart], [ha:t], [hatt], and [hort] respectively).
Such large dialectal differences are often salient even to the untrained listener, but an expert
trained in auditory phonetics may be able to notice and systematically label smaller idiolectal
differences.

Audible features could also be related to laryngeal activity, e.g., whether the voice is breathy or
creaky [99.540], or could be what might be considered speech impediments of varying severity,
e.g., pronouncing “r”” as “w” (/r/ as [w]). Again, although some of these features may be salient to
untrained listeners, a practitioner trained in auditory phonetics may also be able to notice and
systematically label smaller idiolectal differences.

In the auditory approach, the practitioner carefully documents all the features which they deem
relevant and considers the ensemble of all of these features in arriving at an evidentiary statement
for presentation in court.

Use of an auditory-only approach is relatively uncommon. Many practitioners also consider some
acoustic-phonetic measurements. They thus use an auditory-acoustic-phonetic approach. The
measured acoustic-phonetic values are often used to make graphical plots, such as F1-F2 plots
(see Figure 17 in section [99.460]), and the graphical plots are visually compared. In addition to
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comparing the plotted values from the known- and questioned-speaker recordings, practitioners
may also compare them with plots of values from recordings of foil speakers. Foil speakers are
speakers who sound broadly similar to the voice on the questioned speaker recording (or to the
known speaker). They could be a sample of the relevant population, but the number of speakers
used may be too small to be considered a representative sample.

A conclusion as to the strength of evidence is based on consideration of auditory perception and
of the measured acoustic-phonetic values. The auditory-acoustic-phonetic approach is a non-
statistical approach: statistical models are not used to analyse the measured values. In section
[99.700] we discuss the acoustic-phonetic statistical approach.

French et al. (2010) provided a list of features commonly considered in auditory-acoustic-phonetic
analyses:

1. Vocal setting and voice quality. ..., with up to 38 individual elements to be considered.
2. Intonation, ...

3. Pitch, measured as average and variation in fundamental frequency.

4. Articulation rate.

5. Rhythmical features.

6. Connected speech processes such as patterns of assimilation and elision [coarticulation].

7. A large set of consonantal features, including energy loci of fricatives and plosive bursts,
durations of nasals, liquids [e.g., /r/ and /I/], and fricatives in specific phonological
environments, voice onset time of plosives, presence/absence of (pre-)voicing in lenis
plosives, and discrete sociolinguistic variables.

8. A large set of vowel features, including acoustic patterns such as formant configurations,
centre frequencies, densities, and bandwidths, and auditory qualities of sociolinguistic
variables.

9. Higher-level linguistic information including use and patterning of discourse markers,
lexical choices, morphological and syntactic variants, pragmatic behaviour such as turn-
taking and telephone call opening habits, aspects of multilingual behaviour such as
codeswitching.

10. Evidence of speech impediment, voice and language pathology.

11. Non-linguistic features characteristic of the speaker, for example patterns of audible
breathing, throat-clearing, tongue clicking, and both filled and silent hesitation phenomena.

[99.670] Evaluation

The auditory and auditory-acoustic-phonetic approaches’ reliance on experience-based subjective
decisions mean that they are not well suited for use within the new paradigm.

It would be possible to implement the new paradigm using some auditory features. For example,
if the speaker in a voice sample had a stutter it would be possible to calculate frequencies of the
occurrence of stuttering according to phoneme uttered and context (e.g., utterance initial or
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utterance medial). If such numeric data were derived from the known- and questioned-speaker
recordings, and also from speakers in a sample of the relevant population, then it would be possible
to calculate a likelihood ratio. Elliot (2002) and Kirkland (2003) (unpublished Master’s theses)
both calculated likelihood ratios on the basis of frequencies of the occurrence of perceptually
different pronunciations of a number of phonemes.

The majority of features used in the auditory approach are intrinsically subjective and qualitative
— sounds are fitted into boxes according to the phonetician’s perception of them — making it
difficult to calculate quantitative measures of similarity and typicality. Even if relative frequencies
for perceptually different pronunciations can be calculated, more fine-grained information could
be extracted via acoustic measurements.

It would be possible to arrive at a subjective likelihood ratio via the phonetician’s experience-
based estimates of the similarity and typicality of the ensemble of all the features considered. The
practitioner would either subjectively estimate values for the numerator and denominator of the
likelihood ratio, or provide a qualitative verbal expression such as “based on my training and
experience | believe that the properties | heard on the questioned-speaker recordings are much
more likely to occur if they were produced by the known speaker than by some other speaker
selected at random from the relevant population”.

Theoretically it would be possible to measure the accuracy and precision of a practitioner of the
auditory or auditory-acoustic-phonetic approach by having them provide strength of evidence
responses to a large number of pairs of test samples (see section [99.290]ff).

A small-scale evaluation including practitioners of the auditory-acoustic-phonetic approach was
reported in Cambier-Langeveld (2007). The evaluation included five auditory-acoustic-phonetic
submissions, four acoustic-phonetic submissions, two automatic submissions, and one
spectrographic or auditory-spectrographic submission. There were ten test pairs. The evaluation
did not use performance metrics consistent with the new paradigm, and most participants did not
report likelihood ratio values. Results were summarised in terms of whether they gave more
support to the same-speaker hypothesis or more-support to the different-speaker hypothesis,
without considering the strength of that support. The summary also indicated when a participant
declined to give a strength of evidence statement, either because the recordings were of too poor
quality or too short duration and therefore no analysis was attempted (labelled “reject”), or when
a participant reported the results were “inconclusive”. On average, as a group, practitioners of the
auditory-acoustic-phonetic approach were willing to give responses other than “reject” or
“inconclusive” to a larger percentage of the test pairs (88%, 35 of 40 opportunities to respond)
than were practitioners of other approaches (65%, 39 of 60 opportunities to respond), but made a
larger percentage of errors on the test pairs for which they did indicate support for either the same-
or the different-speaker hypothesis (11%, 4 of 35 responses) than did practitioners of other
approaches (3%, 1 of 39 responses). Indicating support for the contrary to fact hypothesis was
counted as an error, irrespective of the strength of support indicated. Given the small size and
other constraints on the evaluation, one should be cautious about generalising these results.

Human Assisted Speaker Recognition (HASR) evaluations were run by the National Institute of
Standards and Technology (NIST) in 2010 and 2012 (Greenberg et al., 2010). The conditions of
the evaluation were not intended to be forensically realistic. The results were not assessed using
performance metrics appropriate for forensic application, and there were a small number of test
pairs. Most participants only provided responses to a set of 15 test pairs, not to a larger set of 150
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test pairs that was also made available. This was likely due to the practical difficulty of testing
systems which require substantial human input for each test pair — Schwartz et al. (2011) reported
taking about 8 hours to process each test pair. Automatic systems outperformed or performed at
about the same level as naive listeners (Ramos et al., 2011; Matg&jka et al., 2012; Gonzélez-
Hautaméki et al., 2013; also see Alexander et al., 2004; Hautaméki et al., 2010; Fernandez
Gallardo, 2014), and expertly operated auditory-acoustic-phonetic systems had about the same or
a better level of performance compared to automatic systems (Schwartz et al., 2011; Saeidi & van
Leeuwen, 2012). Given the small size of the test set, that the tests were not intended to be
forensically realistic, and other constraints on the evaluation, one should be cautious about
generalising these results.

[99.675] Further reading

Descriptions of auditory and auditory-acoustic-phonetic approaches can be found in Hollien (2002,
2016), Hollien et al. (2016), Jessen (2008, 2012), Nolan (1997, 2005), Rose (2002, 2006), and
Zhang (2009).

[99.680] Spectrographic approach
[99.681] Description

The spectrographic approach is based on visual inspection of spectrograms (see Figure 18 in
section 0). The spectrographic approach is also known as voicegram identification, and as
voiceprinting. It is typically combined with listening, resulting in an auditory-spectrographic
approach (aka aural-spectrographic approach).

Protocols for performing auditory-spectrographic forensic voice comparison were developed by
the Federal Bureau of Investigation (FBI), the International Association of Voice Identification
(IAVI), the International Association for Identification (IAl) (the IAVI became part of the IAl in
1980), and the American Board of Recorded Evidence (ABRE) (ABRE was a later break-away
from the IAIl). The FBI ceased using the spectrographic approach in 2011 (personal
communication from Hirotaka Nakasone, Senior Scientist, Digital Evidence Section, FBI,
November 2011). The 1Al no longer promulgates forensic-voice-comparison protocols (personal
communication from J. Polski, Chief Operations Officer, 1Al, February 2010). No response was
received to an enquiry sent to ABRE. In the People’s Republic of China, use of the spectrographic
approach is recommended in the guidelines issued by the Ministry of Justice and the Ministry of
Public Security (Cao et al., 2013; Zhang & Morrison, 2017).

The approach involves making a spectrogram of a stretch of speech, e.g., a word or a phrase, in
the questioned-speaker recording, and also making spectrograms of the same word or phrase
spoken by the known speaker (and potentially by a number of foil speakers).

The known voice sample must be either wholly verbatim (preferred), or partially verbatim to allow
meaningful comparisons with unknown voice samples (ABRE, 1999, §5.2). Only speech sounds
of similarly spoken words should be compared between voice samples. Comparison of the same
speech sound but in different words, should be avoided (ABRE, 1999, §7.1.2). This usually
requires recording the known speaker, and any foil speakers, saying the particular word or phrase
which was said in the questioned-voice recording, either by reading aloud a written text or
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repeating the words spoken by a model speaker. The model speaker is not the speaker on the
questioned-speaker recording, but is someone who should “recite the phrases in the same manner
as the unknown speaker and have the suspect repeat them in a similar fashion. ldeally, the
exemplar should be spoken in a manner that replicates the unknown speaker, to include speech
rate, accent (whether real or feigned), hoarseness, or any abnormal vocal effect.” (ABRE, 1999,
§3.3.1).

Multiple phrases are collected and multiple repetitions of each phrase are collected so as to obtain
an indication of intra-speaker variability.

The examiner is presented with the questioned-speaker spectrogram and with a set of spectrograms
for comparison. Where foil speakers are employed, the set of spectrograms will include
spectrograms from foil speakers and may or may not contain spectrograms from the known
speaker. The task of the examiner is to choose the spectrograms in the comparison set which came
from the same speaker who produced the questioned-voice spectrogram, or to say that none of the
spectrograms in the comparison set came from the questioned-speaker. This would be repeated
for multiple phrases, and in the aural-spectrographic approach the examiner would also listen to
the original recordings (the same procedure may be used in an auditory-only approach). Poza &
Begault (2005) recommend the use of foils, but the ABRE protocols do not require this and the
comparison may be made only between the known- and questioned-voice recordings.

The ABRE protocols 87.1.5 require the examiner to visually compare:
a. General formant shaping and positioning. ...
b. Pitch striations. ...
c. Energy distribution. ...
d. Word length. ...
e. Coupling. ... [i.e., nasality]

f. Other. Plosives, fricatives, and inter-formant features ... inhalation noise, repetitious
throat clearing, or utterances like “um” and “uh” ...

And to auditorily compare:
a. Pitch. ...
b. Stress/Emphasis. ...
c. Rate. ...
d. Disguise. ...
e. Mode. ... [i.e., abruptness of voicing onset]
f. Psychological state. ...
g. Speech defects. ...
h. Vocal quality. ... [related to laryngeal activity]

j. Other. ... long-term fluctuations of pitch (vibrato), vocal fry (extremely low pitching)
[creaky voice], pitch breaks, and stuttering.
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In contrast, Poza & Begault (2005) recommend a gestalt approach (an immediate perception of
the whole pattern).

The ABRE protocols require the examiner to state their conclusions on a seven-step subjective-
posterior-probability scale: “Identification, Probable Identification, Possible Identification,
Inconclusive, Possible Elimination, Probable Elimination, or Elimination” (ABRE, 1999, §7.3).

[99.690] Evaluation

From the 1960s to the 1990s there was a great deal of controversy over the spectrographic
approach. Some proponents of the spectrographic approach made extravagant unproven claims
about the accuracy of the procedure, claiming near infallibility. It was also claimed that real-world
performance would be better than performance in controlled laboratory experiments (Tosi et al.,
1972), the latter claim became known as the Tosi Extrapolation. This lead to criticism and an
increasingly vociferous debate; see, for example, Hollien’s criticisms of the spectrographic
approach and its practitioners (Hollien, 1990, ch. 10; 2002, pp. 24-25, ch. 6), and Koenig’s
response (Koenig, 2002). The 1991 version of the IAI protocols stated that the IAI “does not
support or approve the use of any other voice identification technique not listed within these
standards” (quoted from Gruber & Poza, 1995, §57). Note that the IAVI precursor to the 1Al was
established by proponents of the aural-spectrographic approach. In contrast, the International
Association for Forensic Phonetics and Acoustics (IAFPA), which is dominated by practitioners
of auditory-acoustic-phonetic approaches, passed a resolution in 2007 stating that “The
Association considers this approach [voiceprinting] to be without scientific foundation, and it
should not be wused in forensic casework” <http://www.iafpa.net/voiceprintsres.htm>.
Practitioners of other approaches are likely to take offense if someone describes them as doing
voiceprinting.

Gruber & Poza (1995, §6) summarised the objections to the spectrographic approach as follows:

Opponents claim the following: (1) there is simply no adequate theoretical foundation to
justify the procedures used in forensic voicegram identification; (2) the competency of
forensic examiners, both in absolute terms and relative to laypersons who just listen to
voices, is largely unknown; (3) the so called Tosi “Extrapolation,” which turned the tide in
favor of admissibility by generalizing from laboratory to real-world scenarios, is unproven
and highly questionable; and (4) that to assert that the individual examiner’s experience,
combined with his [sic] competence and talent, should, in the end, override any concerns
about the problems associated with subjective decision making is to make a very
questionable assumption. The strong opposition by so many scientists (as well as legal
academics) to the easy and widespread acceptance of this type of evidence is partly a
reaction to the image of near infallibility of voicegram examiners maintained by some of
those advocating voicegram evidence, and to their apparent self-interest in defining the
community of persons whose opinions should be considered in this matter.

And added (88):

While the community of “certified” forensic examiners has seemed intent on maintaining
an image of near infallibility with regard to the potential for errors of false identification,
in fact we have practically no information about error rates or accuracy under real-world
conditions.
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Many of the criticisms of the auditory-spectrographic approach could also be directed at the
auditory-acoustic-phonetic approach (see Morrison, 2014).

The procedures for collecting the known-voice recording have also been criticised, specifically
that a known-speaker recording of an innocent speaker who is a good mimic could end up being
identified as the source of the voice on the questioned-speaker recording (Gruber & Poza, 1995,
863, §70; Rose, 2002, pp. 112-113). It should be noted, however, that in the ABRE protocol the
known-speaker is never asked to directly mimic the questioned-speaker recording, and if there are
foil speakers they are recorded under the same conditions. Practitioners of other approaches
usually do not make recordings of the known-speaker specifically for the forensic voice
comparison, and instead rely on existing recordings, such as police interviews or telephone calls
made from jail, without requiring that they contain the same phrases spoken in the same way as
on the questioned-voice recording.

One of the dangers of the spectrographic approach is that the conversion of voice-samples from
an acoustic signal to a picture may give a layperson (e.g., a police officer, a lawyer, a judge, or a
jury member) the impression that the procedure is scientific, when in fact the comparisons of the
spectrograms are made subjectively on the basis of the practitioner’s experience.

It is also worth pointing out that the spectrographic approach is now anachronistic. The
spectrographic approach was initially developed in the late 1950s or early 1960s using an analogue
technology which was itself developed in the 1940s (Potter et al., 1947; Joos, 1948). The analogue
devices were superseded by specialised digital hardware in the 1980s, which were in turn
superseded by software running on standard computers in the 1990s. Since the preliminary steps
for creating a digital spectrogram on a modern computer include making objective numeric
measurements of the acoustic signal and manipulating them using signal processing algorithms,
objective numeric information extracted at the algorithmic stage can be directly used as the basis
for forensic voice comparison, rather than relying on a human’s subjective conclusion based on a
graphical representation of that information.

From the perspective of the new paradigm, the spectrographic approach suffers from the same
drawbacks as the auditory and auditory-acoustic-phonetic approaches: Conclusions are subjective
and experience-based rather than based on quantitative measurements and databases. Conclusions
are, by prescription, expressed using a subjective posterior-probability scale. Although at least one
large scale evaluation of the spectrographic approach (using hundreds of speakers) has been
performed (Tosi et al., 1972), the applicability of its results to real-world conditions has been
disputed (Gruber & Poza, 1995, §82—-887). Also, it does not appear to be current practice to assess
validity and reliability by running an empirical evaluation of a practitioner’s performance before
allowing them to testify in court (a recommendation to do this was made by Gruber & Poza, 1995,
861).

[99.695] Further Reading

The spectrographic / auditory-spectrographic approach is described in Kersta (1962), Tosi (1979),
and National Research Council (1979). Reviews of the controversy around its use include Gruber
& Poza (1995), Solan & Tiersma (2003), Meuwly (2003a,b), Morrison (2014), and Lindh (2017).
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[99.700] Acoustic-phonetic statistical approach
[99.701] Description

The acoustic-phonetic statistical approach is practised by phoneticians trained in acoustic
phonetics and involves making quantitative measurements of acoustic properties of voice samples
and statistically analysing the resulting numeric data.

The acoustic properties measured by practitioners of the acoustic-phonetic approach are typically
those which are used in empirical studies of speech production and speech perception, for example
formant frequencies, fundamental frequency, and VOT.

Acoustic measurements are usually made using software implementations of signal-processing
algorithms with human supervision of which parts of the voice samples to measure and of the
settings used by the algorithms.

Usually, comparable phonetic units are identified in both known- and questioned-speaker
recordings and then acoustic properties of these units are measured. A phonetic unit could be a
phoneme, or a major allophone, but could also cover a shorter or longer stretch of speech. For
example, a phonetic unit could be the most general allophone of the phoneme /ai/ (the vowel sound
in the words “hi”, “buy”, “side” etc.), excluding allophones following /r/, /l/, Iw/ (e.g., in “right”,
“light”, and “wipe”) and the nasalised allophones preceding nasals /m/, /n/, /y/ — coarticulation
with these consonants can result in tokens of these allophones having quite different acoustic
properties from tokens of the general allophone. Another example of a phonetic unit is the /rat/
sequence in the word “right”. Longer phonetic units will tend to have less contextual variation and
also could potentially contain more acoustic information pertinent to speaker identity; for example,
the formant trajectories in tokens of /rait/ may be more complex than those in tokens of /ai/ in
general, and consonant transitions of /ai/ tokens taken from /rart/ will be more consistent than /ai/
tokens taken from numerous different consonantal contexts.

Usually the questioned-speaker recording is shorter than the known-speaker recording, so tokens
of potentially usable phonetic units are first identified and marked in the questioned-speaker
recording. If the questioned-speaker recording contains multiple tokens of a particular phonetic
unit, and the number of tokens is considered sufficient for statistical analysis, then tokens of the
same phonetic unit are sought in the longer known-speaker recording, and if sufficient tokens are
also found in that recording then acoustic properties of the tokens of this phonetic unit in both
recordings are measured and subjected to statistical analysis (“sufficient” is ultimately related to
the degree of accuracy and precision desired for the system). The procedure is usually applied to
multiple phonetic units from the same voice recordings.

It is also possible to use acoustic-phonetic-type measurements without explicit use of phonetic
units. For example, formant frequencies or fundamental frequency can be measured at regular
intervals over the entire voiced portion of the voice sample, without regard to speech-sound
identity beyond voiced versus voiceless, and these values can then be subjected to statistical
analysis.
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[99.710] Evaluation

The acoustic-phonetic statistical approach is suited for use within the new paradigm: The acoustic
measurements made are relatively objective, the numeric data generated can be used to calculate
likelihood ratios, and tests of validity and reliability can be conducted.

It should be noted that use of the acoustic-phonetic approach does not guarantee compatibility
with the new paradigm. The analysis of the numeric data could be performed in ways incompatible
with the likelihood-ratio framework; for example, they could be subjected to discriminant analysis
to produce posterior probabilities for a closed set of speakers.

A disadvantage of the acoustic-phonetic statistical approach is that a great deal of human labour
is involved in identifying and marking the phonetic units and in supervising the signal-processing
algorithms. This will usually be the limiting factor in the number of phonetic units examined and
the number of voice recordings included in a sample of the relevant population. Since test pairs
also need to be measured, empirical testing is practically difficult (see section [99.662]).

In a series of comparisons of the performance of acoustic-phonetic statistical systems and
automatic systems under condition approaching or reflecting casework conditions, we found that
the acoustic-phonetic statistical systems performed poorly compared to the automatic systems,
and that combining the two generally led to limited improvement (sometimes no improvement)
over an automatic system alone. The automatic systems also required much less investment of
human labour. The acoustic-phonetic features tested were formant trajectories, fundamental
frequency, and nasal spectra. See Enzinger et al. (2012), Zhang et al. (2013), Zhang & Enzinger
(2013), Enzinger (2014, 2016 ch. 5), Enzinger & Kasess (2014).

[99.715] Further reading

Descriptions of the acoustic-phonetic statistical approach can be found in Rose (2006, 2013, 2017)
and Lindh (2017).

[99.720] Automatic approach
[99.721] Description

The automatic approach to forensic voice comparison was developed by signal-processing
engineers, and draws heavily on research on automatic speaker recognition developed for non-
forensic applications, e.g., intelligence and security applications. Much of the acoustic analysis,
signal processing, and statistical modelling applied in automatic forensic voice comparison is the
same as that applied in automatic speaker recognition for other applications, but whereas in a
security system, e.g., a telephone banking systems that uses voice recognition instead of a
password, the task is to automatically make a same-speaker or different-speaker decision, for
forensic applications the task is to produce an interpretable likelihood ratio.

As with the acoustic-phonetic approach, the automatic approach is based on quantitative
measurements of acoustic properties of speech. The resulting numbers are invariably used as input
to statistical models. Because the measurements and statistical models operate automatically, they
can quickly process large numbers of files, and therefore can easily process hundreds or thousands
of test pairs.
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Although the system is automatic, there is still a very important role for the forensic practitioner.
The forensic practitioner has to decide what question will be addressed, including what constitutes
the relevant population, and the forensic practitioner has to select appropriate data for training and
testing the automatic system. The forensic practitioner also makes sure that what is entered into
the system is actually recordings of the speakers of interest, and not other speakers or noises. An
automatic system is a tool to help a forensic practitioner perform a forensic voice comparison
analysis, not a replacement for the forensic practitioner. Naive use of an automatic system could
lead to highly misleading results.

Common features measured in an automatic system are mel-frequency cepstral coefficients
(MFCCs). MFCCs characterise the shape of the spectrum. The spectrum is usually measured
within a frame of length 20 ms, and this frame is advanced in steps of 10 ms. Measurements are
made over all parts of the recording during which the speaker of interest is speaking. This results
in a long series of sequential MFCC measurements. Around 14 coefficients are obtained in every
frame (the exact number varies from system to system). This results in a much more detailed
characterisation of the speech spectrum than measurements of fundamental frequency plus two or
three formants. MFCCs are usually supplemented with derivative measurements, called deltas,
that characterise how fast the coefficient values are changing over time. 14 MFCCs plus 14 deltas
would mean 28 values every 10 ms. These values are then used as input to statistical models.
Common statistical models currently in use are Gaussian mixture model - universal background
model (GMM-UBM) and i-vectors plus probabilistic linear discriminant analysis (PLDA).
Automatic systems usually also incorporate statistical techniques for addressing mismatches in
speaking styles and recording conditions between the known- and questioned-speaker recordings.
Poor quality recordings and substantial mismatches between known- and questioned-speaker
recordings still lead to poorer performance, but this is substantially mitigated by mismatch
compensation techniques.

Traditionally, automatic systems do not explicitly exploit acoustic-phonetic information such as
phoneme categories, but some systems exploit acoustic phonetic information, for example, by
using an automatic speech recognition system to divide the speech signal up into phoneme size
units. Some practitioners of acoustic-phonetic statistical approaches use MFCCs instead of f0 and
formant measurements. The boundary between acoustic-phonetic statistical and automatic
approaches is therefore fuzzy.

[99.730] Evaluation

The automatic approach is well suited for use within the new paradigm: The acoustic
measurements made are objective, the numeric data generated can be used to calculate likelihood
ratios, tests of validity and reliability can be conducted, and testing is practically easier than for
acoustic-phonetic statistical systems.

It should be noted that, as with the acoustic-phonetic approach, use of the automatic approach
does not guarantee compatibility with the new paradigm. It is especially important to distinguish
an automatic forensic-voice-comparison system compatible with the new paradigm and an
automatic speaker-recognition system developed for some other purpose. The latter sort of system
usually makes a yes/no decision. Most researchers working on automatic speaker recognition are
not knowledgeable about forensic science. Some people may mistakenly believe that non-forensic
automatic speaker recognition systems can be used as-is for forensic work.
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A great advantage of the automatic approach to forensic voice comparison is that it is automatic,
and can therefore analyse large amounts of data with little concern about human labour costs. In
evaluations of automatic forensic voice comparison systems, the primary constraint on testing is
the amount of suitable test data available.

Some phoneticians have criticised the automatic approach for not being based on theoretical and
empirical research on human speech production and perception, a criticism which they have also
made about the spectrographic approach; however, although a typical automatic forensic voice
comparison system does not explicitly exploit information about phonetic units, its ability to
process much more data may allow it to outperform an acoustic-phonetic system.

A danger with an automatic system is that, although the system may be properly designed, it is a
piece of software which could be inappropriately used by someone who is not sufficiently
knowledgeable. As with any software system, if you put garbage in you get garbage out (GIGO).
The operator needs to be aware of potential problems related to issues such as speaking-style
mismatches, recording quality, and selection of the relevant population from which to collect voice
recordings for the population sample and test data.

Papers reporting the results of testing forensic voice comparison systems under (relatively)
forensically realistic conditions include: Solewicz et al. (2012), van der Vloed et al. (2014),
Enzinger & Morrison (2015), Enzinger (2016) Ch. 4, Enzinger et al. (2016), van der Vloed (2016),
Zhang et al. (2016), Enzinger & Morrison (2017), Marks (2017), Silva & Medina (2017).
Evaluations for different automatic systems under conditions reflecting those of one real forensic
case are being published in a virtual special issue of the journal Speech Communication
<http://www.sciencedirect.com/science/journal/01676393/vsi/LIO0KTIJHC7THNM>.

[99.735] Further reading

Descriptions of the automatic approach to forensic voice comparison can be found in Ramos
Castro (2007), Becker (2012), Enzinger (2016), Morrison & Enzinger (2018). For a review of
automatic speaker recognition in general, see Hansen & Hasan (2015).
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LEGAL ADMISSIBILITY OF FORENSIC VOICE
COMPARISON

[99.750] Review

We would argue that admissibility should be considered on a case by case basis, and that just
because one forensic report using a particular approach is ruled admissible does not mean that
another forensic report using the same approach (in the same or a different case) should necessarily
also be admissible. Mutatis mutandis, if one is ruled inadmissible the other should not necessarily
be ruled inadmissible. However, it simplifies matters to discuss admissibility in terms of different
approaches, and although courts sometimes explicitly state that their ruling applies to the
particular instance only, courts have often considered admissibility at an approach level.

Below we briefly summarise the situation regarding admissibility of forensic voice comparison in
several common law jurisdictions.

In the United States, from the 1960s to the 80s testimony based on spectrographic or auditory-
spectrographic approach was often proffered in court proceedings, but the number of cases in
which it was proffered declined and fell to a trickle by the 1990s. Based on published rulings, the
rate of admission appears to have been a little greater than the rate of exclusion (see Faigman et
al., 2015). In United States v Robert N. Angleton, 269 F.Supp. 2nd 892 (S.D. Tex. 2003), in an
admissibility hearing held under Federal Rule of Evidence (FRE) 702 and the criteria established
in William Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993), the court ruled
an auditory-spectrographic approach inadmissible. The court found that demonstration of an
adequate level of scientific validity was lacking. Based on published rulings, no attempt to admit
a spectrographic or auditory-spectrographic approach appears to have survived an FRE 702 -
Daubert challenge since then. In United States v Ali Ahmed, Madhi Hashi, & Muhamed Yusuf, No.
12-661 (E.D.N.Y.), testimony was proffered which was in part based on an automatic approach,
but which was combined with auditory and acoustic-phonetic approaches. In 2015 an FRE 702 -
Daubert admissibility hearing was held, but before the judge ruled on the matter the case was
resolved via a negotiated plea deal.

In New South Wales, Australia, in R v Gilmore [1977, 2 NSWLR 935] the court ruled testimony
based on an auditory-spectrographic approach admissible. The decision was based in part on the
fact that such testimony had been ruled admissible by a number of courts in the United States in
the early to mid 1970s. In 2012 the admissibility of testimony based on an auditory-spectrographic
approach was challenged in R v Ly [NSW District Court, 2010/295928]. Notwithstanding the
passage of time, changes in available technology, and the changes in the US regarding
admissibility of the spectrographic approach, the court ruled that Gilmore was precedential and
the testimony was therefore admissible. Testimony based on an acoustic-phonetic statistical
approach was admitted in R v Hufnagl [NSW District Court, 2008], see Rose (2013).

In Northern Ireland, the appeal court in R v O ’Doherty [2002] NICA 20 / [2003] 1 Cr App R 5,
ruled an auditory-only approach inadmissible, but auditory-acoustic-phonetic approaches
admissible. It was reported that most practitioners considered auditory-only approaches to be
unreliable.

In England & Wales, the appeal court in R v Robb [1991] 93 Cr App R 161 ruled an auditory-only
approach admissible. In R v Flynn and St John [2008] EWCA Crim 970, the appeal court opined
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that Robb was still precedential and that courts in England & Wales should not follow the example
set in Northern Ireland in O’Doherty. The opinion in Flynn was echoed in the appeal court ruling
in R v Slade et al. [2015] EWCA Crim 71. The appeal court in Slade ruled testimony based on an
automatic approach inadmissible (it had been proffered as new evidence). The court was not
satisfied with the quantity and quality of the data used to train and test the automatic system. Nor
was it satisfied with the empirically demonstrated level of performance of the system. Ironically,
testimony based on auditory-only and auditory-acoustic-phonetic approaches had been admitted
at trial despite the fact that they had not been empirical tested (admissibility of these approaches
does not appear to have been challenged at any point in the proceedings).

[99.760] Further reading

Admissibility of forensic voice comparison in the United States is reviewed in Morrison &
Thompson (2017). Admissibility of forensic voice comparison in the England & Wales (with an
excursion to Northern Ireland) is reviewed in Morrison (2018).
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EXAMPLES OF FORENSIC VOICE COMPARISON

[99.770] Introduction

This section provides two examples of forensic voice comparison conducted within the new
paradigm. Each example describes the analysis performed in an actual case.

The first example is based on a case in which the questioned speaker was one of two possible
speakers. The second example is based on a more common sort of case in which the questioned
speaker was either the known speaker or another speaker from a large relevant population.

[99.780] Example 1: Speaker A versus Speaker B

In a 2016 civil case in China, the plaintiff had spoken on her mobile telephone to a woman, and
had recorded the conversation on her telephone. The recording, which was about 25 minutes long,
became a questioned-speaker recording. The plaintiff stated that she believed she had spoken with
the respondent (hereinafter Speaker A), whereas the respondent stated that the plaintiff had spoken
with the respondent’s sister (hereinafter Speaker B).

This case and the analyses conducted are described in greater detail in Zhang et al. (2016).

[99.790] Hypotheses
In this case we adopted the following hypotheses:

1. The voice on the questioned-speaker recording is Speaker A.
2. The voice on the questioned-speaker recording is Speaker B.

This is a relatively unusual situation: The hypotheses were overtly provided by the parties, and
rather than the relevant population being a large group of speakers, it consisted of a single speaker.

[99.800] Relevant data

Both Speaker A and Speaker B were cooperative, as was the plaintiff. We were therefore able to
have an officer of the court use the plaintiff’s mobile telephone to record telephone conversations
with each of Speaker A and Speaker B. Thus, we were able to obtain relevant data in the same
speaking style and the same recording conditions as the questioned-speaker recording. Hence,
there were no speaking style or recording condition mismatch. A limitation, however, was that we
were only able to obtain 5 recordings of each speaker, each about 10 minutes long.

[99.810] Acoustic and statistical analysis

The acoustic and statistical analysis described below is only valid if one assumes that there is no
substantial mismatch in recording condition and speaking style between the questioned-speaker
recording and the Speaker A and Speaker B recordings.
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In each recording, we manually located the speech of the speaker of interest. Over those portions
of the recordings, we measured MFCCs once every 10 ms using 20 ms long windows (see section
[99.720]). MFCCs were measured over the frequency range 300 Hz to 3.4 kHz (400 to 2000 mel).

Because there were only 5 recordings of each known speaker, we only used the 1st through 4th
MFCC values. For each recording, we calculated the means of the 1st through 4th MFCC values
for each recording. Each set of means is called a mean vector, in this case the mean vectors had 4
dimensions. The 4 dimensional mean vectors characterised the average smoothed spectrum of
each recording, as plotted on Figure 21.

Figure 21. Average smoothed spectra of Speaker A recordings (blue lines),
Speaker B recordings (red lines), and the questioned-speaker recording (thicker
green line).
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The 5 Speaker A mean vectors and the 5 Speaker B mean vectors can also be represented as clouds
of points in a 4 dimensional space. We can’t draw 4 dimensions, but Figure 22 plots the clouds of
points in the first two dimensions (this type of plot is called a scatterplot). There is within-speaker
variability within each cloud, and between-speaker variability between the two clouds.

We applied a statistical analysis technique, called linear discriminant analysis (LDA). This
reduced the 4 dimensional MFCC space into a 1 dimensional line. This was a line in the direction
which maximised the between-speaker variability in the 4 dimensional space. The direction of this
line in the first two MFCC dimensions is plotted as the dashed line in Figure 22 (only the direction
of the line matters, we could have drawn any line parallel to the one in Figure 22). The direction
of the line is closer to the direction of the 1st MFCC dimension than the 2nd MFCC dimension
because the ratio of between-speaker variability to within-speaker variability is greater in the 1st
MFCC dimension. The 5 Speaker A mean vectors and the 5 Speaker B mean vectors are converted
from points in the 4 dimensional space to points on the 1 dimensional line (see Figure 23). We
will henceforth refer to the values of the points on the 1 dimensional line as LDA values.
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Figure 22. Scatterplot of mean 1st and 2nd MFCC values from Speaker A
recordings (blue circles), Speaker B recordings (red triangles), and the questioned-
speaker recording (green cross). The dashed line is the 1 dimensional line created
by linear discriminant analysis.
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Figure 23. Speaker A model (blue curve) and Speaker B model (red curve). The
green crosses indicate the likelihoods for the questioned-speaker recording.
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Note that LDA was used only to reduce the number of dimensions, not to classify the speakers. In
general, LDA is a technique which can be used to help compensate for mismatches in speaking
styles and recording conditions. If one has multiple recordings of each speaker under different
conditions, a substantial part of the within-speaker variability will be due to differences in
speaking style and recording conditions. LDA minimises within-speaker variability and
maximises between-speaker variability. Some between-speaker information may be lost in the
process, but this is usually outweighed by the reduction in unwanted variability due to mismatched
conditions.
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Instead of fitting Gaussian distributions to the LDA values (see sections [99.220] and [99.230]),
we fitted t distributions. This is recommended when the amount of data used to train the model is
small. t distributions are similar to Gaussian distributions, but when the amount of data is small
they are wider than Gaussian distributions trained on the same data. This leads to the calculated
value of the likelihood ratio being closer to 1 than it would be if Gaussian distributions were used.
To train the t distribution models, we calculated the mean of the Speaker A LDA values, and the
mean of the Speaker B LDA values, and we used LDA values from both speakers to calculate a
single pooled standard deviation which was used for both models. The probability density
distributions of the models are shown in Figure 23.

To calculate the likelihood ratio, we first took the mean vector of the 1st through 4th MFCC values
from the questioned-speaker recording, and transformed the 4 dimensional mean vector to a 1
dimensional LDA value. We evaluated the likelihood for the LDA value given the Speaker A
model and the likelihood for the LDA value given the Speaker B model (see Figure 23), and
divided the former likelihood value by the latter (see section [99.230]).

[99.820] Empirical testing

Before calculating the likelihood ratio for the questioned-speaker recording, we tested the
performance of the system.

To assess validity, we used a cross-validation procedure. We held out one of the Speaker A
recordings, and used the data from all the other Speaker A recordings and the Speaker B recordings
to train the statistical models (linear discriminant analysis and t distributions). We then repeated
this with each of the other Speaker A recordings, and with each of the Speaker B recordings. Thus
we avoided training and testing on the same data. We calculated 5 likelihood ratio values for which
we knew the test speaker was Speaker A, and 5 likelihood ratio values for which we knew the test
speaker was Speaker B. These likelihood ratio values are shown in the Tippett plot in Figure 24
(we plotted symbols at each calculated likelihood ratio value rather than drawing a line between
these points). The resulting Cy;; value was very low: 0.003. Both the Tippett plot and the Cy value
indicate very good performance (see sections [99.330] and [99.300]).

To assess the reliability of the likelihood ratio value we calculated for the questioned-speaker
recording (see section [99.310]), we used a Monte Carlo simulation procedure. We used the means
of the 1st through 4th MFCC values of the 5 Speaker A recordings, and the means of the 1st
through 4th MFCC values of the 5 Speaker B recordings to build Gaussian models which we then
used in conjunction with a random number generator to create simulated data. We generated 1000
sets of 5 simulated Speaker A 1st through 4th MFCC mean vectors and 5 simulated Speaker B 1st
through 4th MFCC mean vectors. Linear discriminant analysis models and t distribution models
were trained using each set of simulated data, and a likelihood ratio calculated for the original
mean vector of 1st through 4th MFCC values from the questioned-speaker recording. Using this
procedure, we calculated 1000 likelihood ratio values. We then ranked the 1000 values, and found
the 100th highest values. 90% of the 1000 simulated likelihood ratio values were further from a
likelihood ratio of 1 than was the 100th value.

The latter is a frequentist approach to dealing with reliability, and the one we used for the actual
case report. An appendix to Zhang et al. (2016) describes a Bayesian approach which we
conducted for research purposes at a later date (see also Morrison & Poh, 2017).
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Figure 24. Tippett plot. Speaker A likelihood ratio values shown as blue circles,
and Speaker B likelihood ratio values shown as red triangles. The solid green line
is at the likelihood ratio value calculated for the questioned-speaker recording, and
the dashed green line is at the 100th likelihood ratio value from the Monte Carlo
simulations.
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[99.830] Conclusion

The calculated value for the likelihood ratio was approximately 1/60,000 (exact value 1/58,562).
This is our best estimate for the strength of the evidence. Based on tests of the reliability of our
system, we are 90% certain that the value of the likelihood ratio is at least approximately 1/7000
(exact value 1/7036).

Note that since we arbitrarily put the Speaker A hypothesis in the numerator of the likelihood ratio
and Speaker B hypothesis in the denominator, and the likelihood of the evidence given the Speaker
B hypothesis is larger than the likelihood of the evidence given the Speaker A hypothesis, the
calculated likelihood ratio value is less than 1, and we have expressed it above as a fraction. Below
we reverse the Speaker A and Speaker B hypotheses in the wording so as to be able to express the
likelihood ratio as a value larger than 1.

We estimate that the probability of obtaining the measured acoustic properties of the voice on the
guestioned-speaker recording is 60,000 times higher if it were produced by Speaker B than if it
were produced by Speaker A. We are 90% certain that it is at least 7000 times higher.

Let us assume the trier of fact is conservative and decides to use the value of 7000 rather than
60,000. Let us further assume that the trier of fact chooses to use the normative logic of Bayes
Theorem (sections [99.150] and [99.160]). Whatever the trier of fact’s prior odds, the trier of fact
should multiply those prior odds by 7000 to obtain the posterior odds. Whatever the trier of fact’s
prior belief as to the relative probabilities that the questioned speaker was Speaker B versus that
the questioned speaker was Speaker A, after hearing the strength of evidence statement, the trier
of fact should believe that the relative probability that the questioned speaker is Speaker B as
opposed to Speaker A is 7000 times higher than they believed it to be before.
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Morrison & Poh (2017) reported on reanalyses using more conservative statistical procedures
applied to the same data, which produced likelihood ratios in the range 1/5 to 1/2,500.

[99.840] Example 2: Known speaker versus a large relevant population

In a 2012-2013 criminal case in Australia, a fraud was perpetrated by a person who called a
financial institution. The call was recorded, and became a questioned-speaker recording. A suspect
was arrested and interviewed by the police. The recording of that interview became the known-
speaker recording.

This case and the analyses conducted are described in greater detail in Enzinger et al. (2016). The
statistical models used in the case and described below were GMM-UBM (see section [99.720]).
Enzinger (2016) Ch. 4 also describes an i-vector PLDA analysis which was subsequently
conducted as a research exercise.

[99.850] Hypotheses

The speaker on the questioned-speaker recording was clearly an adult male who spoke English
with an Australian accent. In this case we adopted the following hypotheses:

1. The voice on the questioned-speaker recording is that of the known speaker (the suspect).

2. The voice on the questioned-speaker recording is not that of the known speaker. It is the
voice of some other speaker from the relevant population. The relevant population is
adult male speakers of Australian English.

We actually further restricted the relevant population by excluding speakers who sounded quite
different from the voice on the questioned-speaker (see section [99.180]).

[99.860] Relevant data

Recordings for inclusion in the sample of the relevant population were taken from a database of
recordings of 500+ Australian English speakers collected specifically for use in forensic voice
comparison research and casework (the database is available from <http://databases.forensic-
voice-comparison.net/>). Most speakers were recorded in multiple recording sessions, each
session separated by about a week. In each session, the speakers performed different tasks which
elicited different speaking styles. The speaking styles used for this case came from a task in which
the speakers had to exchange information (including numbers and letters) over the telephone, and
from a simulated police interview task. These speaking styles were similar to those of the
questioned-speaker recording and the known-speaker recording respectively.

The questioned-speaker recording was of a landline telephone call made to the call centre of a
financial institution. At the call centre end there was background office noise, including
background speech from a large number of speakers (babble) and typing noised (see section
[99.600]). The audio recording was also saved in a lossy compressed format (see section [99.610]).

The known-speaker recording was recorded in a small room with hard walls. This resulted in
substantial reverberation (echoes) on the recording (see section [99.600]). There was also
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background noise from the ventilation system. The audio was saved in a different compressed
format.

The recordings from our database were high-quality recordings. We used signal processing
techniques to simulate the conditions of the known- and questioned-speaker recordings. This
included passing recordings through filters to simulate telephone transmission, compressing and
decompressing recordings using the same codecs as had been used on the known- and questioned-
speaker recordings, adding reverberation based on an estimate of the reverberation properties of
the interview room (its impulse response), and adding background noise. The background noise
was extracted from portions of the known- and questioned-speaker recordings when no one was
speaking and added to the database recordings at the same signal to noise ratio as in the known-
and questioned-speaker recordings. Audio recordings providing examples of the results of
simulating the case conditions are available at <http://expert-evidence.forensic-voice-
comparison.net/#audio>. This process gave us a set of recordings that came from a sample of
speakers representative of the relevant population, and that reflected the speaking styles and
recording conditions of the known- and questioned-speaker recordings in the case under
investigation.

[99.870] Acoustic and statistical analysis

The portions of the known- and questioned-speaker recordings corresponding to the speech of the
speaker of interest were manually located. The speech of the interlocutor (including when
overlapping with the speech of the speaker of interest), periods of silence, and any transient noises
were excluded. This left more than 14 minutes of known-speaker speech, but only 46 seconds of
questioned-speaker speech. The database recording had been previously processed in a similar
manner (except that an automated approach had been used initially and subsequently manually
checked and corrected).

MFCCs were measured over the frequency range 300 Hz to 3.4 kHz. Since the questioned-speaker
recording was a recording of a landline telephone transmission, it did not contain information
outside this frequency range (see section [99.610]). Using 20 ms long windows, MFCCs + deltas
were extracted every 10 ms during the speech of the speaker of interest in each recording (see
section [99.720]). The 1st through 14th MFCC values plus their deltas were used to create 28
dimensional feature vectors.

A mismatch compensation technique known as feature warping was applied to the feature vectors.
This statistical technique has been shown to improve system performance when there is a
mismatch between the recording conditions of the known- and questioned-speaker recordings.

Figure 25 provides a schematic of the statistical modelling procedures, which consisted of GMM-
UBM followed by logistic-regression calibration (see sections [99.720] and [99.240]).
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FIGURE 25. Schematic of the statistical modelling approach.
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Mismatch-compensated feature vectors from recordings of 44 speakers in the sample of the
relevant population were used to train a relevant population model. The recordings used for
training the UBM reflected the speaking style and recording conditions of the known-speaker
recording. Data from these particular 44 speakers were used because they had only participated in
one recording session, and we wanted to use data from the speakers with multiple recording
sessions later for training the calibration model and for empirical testing. In the GMM-UBM
procedure, the model of the relevant population is known as the Universal background model
(UBM). The UBM was a Gaussian mixture model (GMM) with 512 Gaussian components.

A known-speaker model was trained using the data from the known-speaker recording. Because
the amount of data from one speaker is relatively small, rather than training the model from scratch,
it was adapted from the UBM. This is standard in the GMM-UBM procedure. Note that the known-
speaker model and the UBM were both trained with data reflecting the known-speaker recording
conditions and hence both have the same mismatch with the questioned-speaker recording.
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A total of 4137 feature vectors could be extracted from the questioned-speaker recording. For each
mismatch-compensated feature vector from the questioned-speaker recording, the likelihood of
the known-speaker model and the likelihood of the UBM was assessed. The first likelihood was
divided by the second to calculate a likelihood ratio. We then had 4137 per-feature-vector
likelihood ratio values.

We calculated the log of each of the 4137 per-feature-vector likelihood ratio values, then
calculated their mean. The latter value is known as a score. A score captures information about
the similarity of the voice on the questioned-speaker recording with respect to the known speaker,
and its typicality with respect to the relevant population, but the value of the score is not directly
interpretable as a likelihood ratio. Scores have to be converted to likelihood ratios, a process which
is also known as calibration (see section [99.240]). To train a calibration model, we took pairs of
recordings from 61 speakers from the sample of the relevant population (speakers whose data had
not been used in training the UBM). In each pair of recordings, one member of the pair reflected
the speaking style and recording conditions of the known-speaker recording, and the other
reflected the speaking style and recording conditions of the questioned-speaker recording.
Mismatch-compensated feature vectors from the first member of the pair were used to train a
speaker model, and a score was calculated using this speaker model, the UBM, and the
mismatched-compensated feature vectors from the second member of the pair. A large number of
pairs were same-speaker pairs, and a large number were different-speaker pairs. This resulted in
a set of same-speaker scores and a set of different-speaker scores. The same-speaker scores and
different-speaker scores were used to train a logistic regression model (this is a commonly used
calibration model, see section [99.240]). The logistic regression model was then used to convert
the score from the questioned-speaker recording to a likelihood ratio.

[99.880] Empirical testing

Recordings from another 61 speakers from the sample of the relevant population were used to test
the system. No recordings from these speakers had been used to train the system. Pairs of
recordings were used, one member of each pair reflecting the conditions of the known-speaker
recording and the other reflecting the conditions of the questioned-speaker recording. A large
number of pairs were known to be same-speaker pairs and a large number known to be different-
speaker pairs. This resulted in a set of same-speaker likelihood ratio values and a set of different-
speaker likelihood ratio values. These were used to make the Tippett plot in Figure 26 and to
calculate a Cyr value, which was 0.523 (see sections [99.330] and [99.300]).

The empirical tests of system performance also included a frequentist assessment of precision (see
section [99.310]). The 95% credible interval was £1.06 orders of magnitude. This is shown on the
Tippett plot as the dashed lines to the left and right of the solid lines.

Overall, system performance was reasonable but not very good. The likelihood ratio value
calculated for the known- and questioned-speaker recording was, however, far from 1 (see section
[99.890]), so even allowing for relatively poor overall performance leading to the use of a more
conservative value than the best estimate for the likelihood ratio, we think the performance was
adequate. Whether the level of performance would have been sufficient to satisfy a judge at an
admissibility hearing we do not know, because, after we submitted our report and before going to
trial, the case was settled via a plea deal.
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In hindsight, we would criticise the size of sample used to train the relevant-population model as
too small. In subsequent research activities we have used the same data in a different way, using
recordings from 105 speakers to train the UBM and using cross-validation on the recordings from
the 61 test speakers to train the logistic-regression calibration model. We have also tested
additional mismatch-compensation techniques, and tested i-vector PLDA systems. The best
performance was obtained using an i-vector PLDA system which included mismatch
compensation at both the feature level and the i-vector level (see Enzinger, 2016, ch 4).

Figure 26. Tippett plot with 95% credible interval. The vertical green line indicates
the value of the likelihood ratio calculated for the comparison of the voices on the
known- and questioned-speaker recordings.
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[99.890] Conclusion

The calculated value for the likelihood ratio was approximately 3300 (exact value 3287). This is
our best estimate for the strength of the evidence. Based on tests of the reliability of our system,
we are 95% certain that the value of the likelihood ratio is at least approximately 425 (exact value
424).

We estimate that the probability of obtaining the measured acoustic properties of the voice on the
questioned-speaker recording is 3300 times higher if it were produced by the suspect than if it
were produced by another speaker from the relevant population. We are 95% certain that it is at
least 425 times higher.

Let us assume the trier of fact uses the best estimate of the strength of evidence. Let us further
assume that the trier of fact chooses to use the normative logic of Bayes Theorem (see sections
[99.150] and [99.160]). Whatever the trier of fact’s prior odds, the trier of fact should multiply
those prior odds by 3300 to obtain the posterior odds. Whatever the trier of fact’s prior belief as
to the relative probabilities that the questioned speaker was the suspect versus that the questioned
speaker was another speaker from the relevant population, after hearing the strength of evidence

Morrison, Enzinger, Zhang 84 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

statement, the trier of fact should believe that the relative probability that the questioned speaker
is the suspect, as opposed to another speaker from the relevant population, is 3300 times higher
than they believed it to be before.
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SPEAKER RECOGNITION BY LAYPEOPLE

[99.910] Introduction

Forensic voice comparison performed by forensic practitioners has been the topic of this chapter
so far. In contrast speaker recognition by laypeople refers to the general ability of a person with
no special training to recognise a voice and identify the speaker. This has also been referred to as
non-technical speaker identification and as naive speaker recognition.

Sometimes an earwitness who is present at the scene of a crime hears the offender speaking and
either immediately recognises the offender’s voice as belonging to a particular person they already
know, or later attempts to pick the speaker out of a voice lineup. If no audio recording of the crime
being committed is available, a forensic practitioner cannot perform a forensic voice comparison.

In other instances audio recordings of both the known and questioned speaker are available and a
forensic voice comparison performed by a forensic practitioner is potentially possible. Despite
this, in some jurisdictions police officers and interpreters who are laypersons with respect to
forensic voice comparison are allowed to listen to the audio recordings and testify in court as to
the identity of the questioned speaker.

Below we describe the problems with allowing a layperson to do the work of a forensic practitioner.
We begins by describing some basic differences between speaker recognition by laypeople and
forensic voice comparison [99.930], discuss some mistaken beliefs about speaker recognition by
laypeople [99.950], and describe true earwitnesses and speaker lineups [99.960]. This is followed
by discussion of some factors that have been found to affect the accuracy of speaker recognition
by laypeople [99.970]ff, and finally these factors are related to an example based on the testimony
of a police officer in an actual case [99.1040]ff.

Note that (as will be apparent in some of the quotations below) “reliability” has often been used
in the literature in place of “validity” (see sections [99.290]ff), although it is usually clear that it
is validity rather than reliability which is being discussed.

[99.930] Speaker recognition by laypeople versus forensic voice comparison by
forensic practitioners

Speaker recognition by laypeople refers to the ability of almost all humans to identify a speaker
simply by listening to their voice. If a relative or friend phones us and immediately starts a
conversation without identifying themself, we often recognise them from their voice. There are,
however, also instances when we do not recognise the voice of a caller. Perhaps the caller is
someone we do not know, or perhaps someone we do know but we do not recognise their voice.

Sometimes our identification of a speaker is incorrect, we may have mistaken the voice of one
relative for the voice of another, or we may have mistaken the voice of a stranger for the voice of
a friend. We may also be aware that we are not 100% certain as to the identity of a speaker.

Speaker recognition by laypeople is generally holistic in character. The listener simply states who
they think the voice belongs to, and has difficulty identifying properties of the voice that allow
them to distinguish it from other voices. Even if the listener can identify particular properties of
the voice which have led them to a particular identification, as a lay person they are unlikely to
have the vocabulary be able to give a detailed description of the voice.
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In contrast, forensic voice comparison is (ideally) performed by forensic practitioners with
extensive training in phonetics or speech processing, and training in evaluation of forensic
evidence. Often the level of training is such that the practitioner has obtained a doctorate in a
relevant field. A forensic practitioner working within the new paradigm makes use of relevant
data, quantitative measurements, and statistical models to quantify the strength of evidence. They
also empirically test the validity and reliability of their system under conditions reflecting those
of the case under investigation.

[99.950] Mistaken beliefs about speaker recognition by laypeople

It is perhaps because they are aware of their own capacity to identify speakers that police officers,
lawyers, judges, and jury members may believe that they themselves or other lay people can
determine whether a questioned voice on a recording is the same as the voice on a recording known
to be that of a suspect or defendant. In contrast, few police officers, lawyers, judges, or jury
members would believe that a lay person could evaluate DNA evidence or fingerprint evidence
and would immediately call upon a forensic practitioner for assistance.

Yarmey et al. (2001) state:

Because of the common experience of readily recognizing the voices of relatives, friends,
and fellow workers ... and identifying the voices of many politicians, actors, and radio and
television personalities ..., a myth exists that all voice recognition is accurate and reliable.
(p. 284)

Trial judges have assumed that jurors are adequately informed about the reliability of
person identification. In contrast, empirical evidence suggests that there are wide
discrepancies between lay people’s opinions and scientific findings about the reliability of
face and voice identification. (p. 286)

Solan & Tiersma (2003) state:

When it comes to admitting tape-recorded evidence, judges sometimes seem to assume that
law enforcement officers will be particularly good at this task, but little evidence supports
this assumption. Interestingly, experimental evidence suggests that police officers are no
better at eyewitness identification than lay witnesses. (p. 403)

The trial court found that there was “no extensive scientific basis that ‘earwitness’
identification is as susceptible to the same misidentification as eyewitness identification.”
[However] ..., voice identification is probably even more problematic than eyewitness
testimony. We see no reason for refusing to give an instruction that could help jurors decide
more analytically how much weight to give an identification. ... Courts Should Allow
Expert Witnesses to Testify on the Reliability of Earwitness Identification. (p. 432)

Bull & Clifford (1999b, pp. 202—-203) express similar sentiments.

Laub (2010) reviewed literature and conducted experiments comparing eyewitness and earwitness
identification. A number of differences between the visual and aural modalities have been found.
A key finding is that the accuracy of earwitness identification is substantially worse than that of
eyewitness identification. Mock juries, however, were found to be insensitive to the existence of
this difference, apparently giving equal weigh to both. If mock juries were not told about factors
that research has found to lead to better or worse accuracy of earwitness identification or they

Morrison, Enzinger, Zhang 87 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

were told about them only in jury instructions, they were insensitive to these factors. They were
sensitive to these factors, however, when they were told about them in expert testimony or closing
arguments. This suggests that the effects of these factors on earwitness accuracy are hot common
knowledge, and that this is therefore a proper topic for expert testimony.

Mistaken witness identifications (voice and visual) are two of the greatest causes of actual
or possible wrongful convictions, warranting the inclusion of courtroom safeguards that
have been found to increase awareness. (Laub, 2010, p. 98)

[99.960] True earwitnesses and speaker lineups

It is important to distinguish between speaker identification performed by an earwitness, i.e.,
someone present at the scene of the crime who heard the voice of the offender while the crime
was being committed and there are no audio recordings of the crime, and speaker identification
performed by someone listening to an audio recording related to the crime and comparing that
with a recording of a suspect or with their experience of having heard the suspect speak.

As will be explained below, speaker recognition by laypeople is of unknown validity unless the
individual listener can be tested under circumstances similar to those under which they identified
the questioned voice. If the circumstances are such that earwitness testimony is all that is possible,
earwitness testimony may still be of assistance to the trier of fact. But, the court should be apprised
of the problems with its validity and should keep the various caveats in mind when considering
the weight of such testimony.

In contrast, when audio recordings of the questioned and known voices are available, forensic
voice comparison of demonstrable validity and reliability should be performed by a forensic
practitioner. If the layperson identifying the speaker is not actually an earwitness, but instead
someone who has listened to the audio recordings for the specific purpose of making a speaker
identification, we do not believe there is any reasonable argument for admitting this in court in
place of forensic voice comparison.

When forensic voice comparison is not possible, an earwitness may be asked to listen to a voice
lineup. Usually, the earwitness first describes the voice of the offender to the investigating officer
or to a forensic practitioner, e.g., male Midwestern accent, deep voice. A forensic practitioner
prepares one of more sets of audio recordings. Each set consists of foil speakers who match the
description given by the earwitness, and may or may not also include a recording of the suspect.
Care should be taken so that the linguistic content, speaking style, or recording conditions do not
make the suspect stand out compared to the foil speakers. Where the suspect does not match the
earwitness’s description (e.g., the suspect has a Brooklyn accent but the earwitness described a
Boston accent, or the suspect has a New Zealand accent but the earwitness described an Australian
accent), at least a substantial proportion of the foil speakers should sound like the suspect.
Listeners who were not earwitnesses to the crime and who have never heard the suspect or the foil
speakers can be used to screen the recordings to make sure the suspect does not stand out. A set
of recordings is presented to the earwitness. We recommend presenting one speaker at a time,
rather than to allowing the earwitness to go backwards and forwards between speakers. The
earwitness has to say whether they recognise the voice or not, and, if they recognise it, say who
they think it is. Once they have given a response, they hear the next speaker. The earwitness is
told that the voice of the offender may or may not be in the set of recordings. The earwitness is
not told how many recordings or speakers will be included in the set (this avoids increasing the
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probability of the earwitness identifying a speaker because they know they are getting towards the
end of the list and haven’t picked anybody yet). We recommend that the earwitness be asked to
listen to more than one set of recordings, with breaks in between sets (this helps the earwitness
believe that it is possible that the offender may not be included in a set). If the suspect is included
in more than one set, a different recording of the suspect should be in each set, and, to avoid the
suspect standing out, some foil speakers must also be included in more than one set (different
recordings of each foil speaker in each set). Likewise, more than one recording of the suspect, and
more than one recording of at least some of the foil speakers may be included in a set. If so, the
earwitness should be told that there may be one, more than one, or no recordings of the offender
in a set (this decreases the probability that the earwitness will not identify a speaker because they
already identified a speaker in a recording that was presented earlier). The recordings (and sets of
recordings) should be presented in random order, ideally presented by a computer program. To
avoid the potential for the person administering the lineup to influence the earwitness, the
administrator should have no knowledge of whether the suspect is included in a set or not, and
should not be able to hear the recordings or see the earwitness’s responses.

Descriptions of voice lineup protocols can be found in various works, including: Hollien et al.
(1995); Hollien (1996); Nolan & Grabe (1996); Laubstein (1997); Broeders & van Amelsvoort
(1999, 2001); Nolan (2003); Jessen (2008); Zetterholm et al. (2012); Hollien et al. (2014); Sarwar
et al. (2014); de Jong-Lendle et al. (2015). Butcher (1996) emphasises the danger of a poor choice
of foils such that the suspect stands out.

[99.970] Validity of speaker recognition by laypeople

There are multiple factors which have been reported in the research literature as related to listeners’
abilities to correctly identify speakers:

[99.980] Variability between listeners

Some listeners are good at identifying speakers from their voices and some listeners are poor at
identifying speakers from their voices. In experiments under different conditions, different
listeners have been found to range from 100% correct to at-chance performance. One of the most
recent studies to find large between-listener differences is Sgrensen (2012).

Age has been identified as a factor which is related to individual listener differences: Bull &
Clifford (1984) found that older listeners do not tend to perform as well as younger adult listeners
(this may be due to general age-related hearing loss). However, it is not the case that a particular
older listener will necessarily perform worse than a particular younger listener.

There is substantial idiosyncratic between-listener variation.

In order to assess the validity of an individual listener’s speaker identification, that listener would
have to be tested: They would have to identify a large number of voice samples so that their
correct-identification rate could be obtained (see section [99.290]). In order for such a test to be
meaningful to the court, it would have to be conducted under conditions similar to the conditions
under which the listener made the identification of the questioned voice. The number of voice
samples which would have to be identified would depend on a trade-off between the desired level
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of precision and practicality, 10 would be very practical but likely have insufficient precision,
1000 would probably satisfy everyone’s concerns about precision but would be impractical.

[99.990] Listener certainty

Listeners may vary in their certainty that their speaker identification is correct. Bull & Clifford
(19994, pp. 217-218) summarise studies on the relationship between listeners’ certainty and their
correct-identification rates.

Most studies have focussed on differences between listeners, i.e., whether a listener who expresses
a greater degree of certainty in their identification is actually more likely to be correct than a
listener who expresses less certainty. In voice-lineup situations a positive correlation has been
found between certainty and correct-identification, but only when the target voice (e.g., the
offender voice) was included in the lineup and not when the target voice was not included, even
though the listeners were told that the target voice may or may not be in the lineup. This is to say
that when the target voice is not included in the lineup a listener may with relatively high certainty
incorrectly identify one of the voices in the lineup as the target voice. For three of the four target
speakers in van Wallendael et al. (1994), when the target speaker was not included in the lineup
listeners always incorrectly identified one of the speakers in the lineup as the target.

That listeners confidently pick one of the speakers in the lineup when the target is actually absent
from the lineup is rather worrying if one considers the situation where the police investigators are
mistaken and their suspect is not the offender. The listener may pick the suspect’s voice,
particularly if it happens to be the voice in the lineup which sounds most similar to that of the
offender. An earwitness may with a high degree of certainty identify the suspect’s voice as the
voice of the offender even though the suspect is not the offender (Zetterholm et al., 2012).

What may be more relevant than the between-listener relationship between certainty and correct-
identification is the within-listener relationship; whether, for example, on tests on which an
individual listener says they are 50% certain they are actually correct 50% of the time, and on tests
on which they say they are 75% certain they are actually correct 75% of the time, etc., or whether,
for example, instead when they say they are 50% certain they are actually correct 25% of the time,
and when they say they are 75% certain they are actually correct 50% of the time. Clifford, Bull,
& Rathbom (1980, cited in Bull & Clifford, 1999a, p. 218) and Bull & Clifford (1984, pp. 121—
123) found a positive correlation between individual listeners’ certainty and their correct-
identification rates, but only in cases in which the target voice was included in the lineup. Also,
note that in both the examples above (50-50, 75-75 versus 50-25, 75-50) the correlation between
certainty and correctness is 100%, but it would not be appropriate to give the same weight to a
listener’s certainty statement in each case (high correlation does not imply good calibration).

In voice lineups in which the target speaker was present, Sarwar et al. (2014) found that listeners
were overconfident in their identification, i.e., their reported levels of certainty in the correctness
of their identifications was greater than their actual correct identification rate. They were
overconfident by an average of 14 to 38 percentage points depending on the test conditions. In
voice lineups in which the target speaker was not present and the listener said they were not present,
Zetterholm et al. (2012) found that listeners were underconfident in their degree of certainty that
the target speaker was not in the lineup.

Solan & Tiersma (2003) state:

Morrison, Enzinger, Zhang 90 2017-12-19a



EXPERT EVIDENCE FORENSIC SPEECH SCIENCE CHAPTER 99

People rely on an identifier’s level of confidence in judging how accurate the identification
is likely to be. But that level of confidence correlates only slightly with the likelihood of
accuracy. The result is that people tend to place too much credence in an identification.

For a listener’s stated degree of certainty in their identification of the questioned voice to
be truly of value to the court, the listener would have to be tested to find the relationship
between their degree of certainty and their correct-identification rate. (p. 412)

Laub (2010) concluded that:

Average jurors are sensitive to certain variables, such as witness confidence, which has
little reliable relation to accuracy. (p. 94)

mock jurors mistakenly relied on the confidence rating of the victim in her identification
of the defendant. (p. 96)

Yarmey (1995, pp 802-803), Bull & Clifford (1999a, p 218), Rose (2002, p 101), Solan & Tiersma
(2003, p 412), Yarmey (2004, p 275), Ohman et al. (2010, p 176), McDougall et al. (2015, p 267)
all conclude that the degree of certainty expressed by an earwitness should not be taken as an
indicator of whether their identification is correct.

[99.1000] Listeners’ familiarity with speakers’ voices

Listeners are generally better at identifying the voices of familiar speakers such as relatives,
friends, acquaintances, and media personalities, whereas they are poorer at identifying the voices
of less familiar speakers.

“Familiar” in the literature is usually used to describe a voice which a listener has heard on many
occasions over long stretches of time (typically years) summing to a long duration (at least many
hours) of exposure to the voice. This includes substantial exposure to the within-speaker
variability of the voice in different contexts (different degrees of formality and tiredness, different
interlocutors etc.). Familiarity is not a binary construct and listeners may be more familiar with
some voices and less familiar with others (Yarmey et al., 2001).

Another sense in which the term “familiar” has been used in legal settings applies in the situation
where a listener repeatedly listens to audio recordings of a speaker’s voice in order to deliberately
“familarise” themself with the voice. Such a procedure is unlikely to expose the listener to the
same duration and variety of the speaker’s voice over the same period of time as would be the
case for relatives and friends, and even media personalities. Speaker-identification performance
on “familiarised” speakers would therefore be expected to be poorer than on highly-familiar
speakers such as relatives and friends.

Edmond & San Roque (2009) state:

Police, interpreters and even experts may have some exposure or limited familiarity with a
suspect but not enough familiarity to match the ‘specialised knowledge’ of a family
member, partner or good friend. (p. 31).

In some studies (see summaries in Bull & Clifford, 1999b, p 198; Solan & Tiersma, 2003, pp 397—
399) listeners have heard an unfamiliar target voice for a few seconds or a few minutes, and were
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later asked to identify the speaker in lineups. Results were sometimes contrary to expectations in
that sometimes longer exposure led to poorer performance by listeners.

We have not been able to find any studies which involved concerted efforts by the listeners to
familiarise themselves with a speaker’s voice. Some summaries seem to suggest that Clarke &
Becker (1969) was such a study, but our reading of the original publication leads us to conclude
that this is not the case.

Although the identification of familiar voices has been found to be better than that of unfamiliar
voices, it has not been found to be perfect. Even listeners whom one would expect to be highly
proficient can make mistakes even with very familiar voices: On several tests, world-famous
phonetician Peter Ladefoged failed to correctly identify the voice of his own mother (Ladefoged
& Ladefoged, 1980, p. 49).

Foulkes & Barron (2000, pp. 182-183), Rose (2002, pp. 98-99), and Solan & Tiersma (2003, p.
411) all conclude that the ability of listeners to identify familiar voices is generally overestimated,
including by members of the legal profession — people think that they themselves and that other
listeners are better at identifying familiar speakers than they really are.

[99.1010] Typicality of speakers’ voices

Some speakers have voices which are very distinctive; their speech patterns or the acoustic
properties of their voice are unusual in that they are atypical in the population at large. Such
speakers are usually easier to identify than speakers who have typical voices (see, for example,
Sgrensen, 2012).

If two speakers are selected at random from the population, then it is more likely that they will
both have relatively typical voices than that either of them or both of them will have atypical
voices. Recordings of two speakers with typical voices will sound similar to each other, not
because the voices are produced by the same speaker, but simply because the two speakers both
have typical voices. To illustrate: Amongst the population of Hollywood actors, Sean Connery
has a very atypical voice in that his accent is Scottish rather than the more typical General
American and he has a lisp rather than the typical lack of a lisp. Sean Connery’s voice would
therefore be very easy to identify in a selection of recordings of Hollywood actors. In contrast, the
voices of Hollywood actors with typical voices, actors who speak General American English and
have no speech impediments, would be harder to identify. Note also that if we change the
population from Hollywood actors to Scotsmen with lisps, then Sean Connery’s voice becomes
more typical and he will be harder to identify in a selection of audio recordings of Scotsmen with
lisps.

There are, however, exceptions to the general pattern of atypical voices being easier to correctly
identify. If two different speakers have atypical voices which are both atypical in the same way
then this may increase the likelihood that a listener will misidentify one for the other and be
overconfident in their identification compared to if both speakers had more typical or differently
atypical voices. The two speakers may actually be relatively dissimilar, but their shared atypicality
causes the listener to think that they are more similar than they really are.

From the listener’s perspective, two speakers may be atypical in the same way if they both speak
with the same accent and that accent is unfamiliar to the listener. The listener’s built-in relevant
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population is the population of speakers whom they are used to hearing. Most Americans are most
familiar with American accents of English. Most Americans cannot tell the difference between an
Australian and a New Zealand accent. To people familiar with those accents (e.g., Australians and
New Zealanders), the differences are obvious. Betancourt & Bahr (2010) reviewed studies
involving cross-dialect speaker identification.

One study (Ladefoged, 1978) asked 10 members of the UCLA Phonetics Lab to identify the voices
on 12 recordings. 11 of the voices were familiar to all the listeners in that they were other members
of the lab, and 1 was a stranger to 7 of the listeners. Listeners were not told whether all the voices
would be familiar or not. Only 2 members of the lab were African American, neither was included
in the recordings. The stranger was African American. 5 of the 7 listeners for whom the African
American speaker was a stranger misidentified the stranger’s voice as one of the African American
members of the Lab. The results would appear to be due to a prior expectation effect and an
atypicality effect associated with a less familiar accent.

There has been at least one court case in which listeners misidentified one speaker for another
even though the two speakers had different accents. Listeners from Southern California
misidentified a questioned speaker with a Boston accent as a known speaker who had a New York
City accent (Labov & Harris, 1994).

We can think of a listener’s ability to identify a speaker as being based on their experience with
the speakers they have heard over their lifetime. The parallel in a forensic voice comparison
system is the database used to train the statistical model which calculates the typicality of an
offender recording. If we put the wrong data into this model, for example if we use a database of
American English voices when the known- and questioned-speaker recordings are both of
Australian English speakers, then the system’s estimate of the typicality of the questioned-speaker
recording will be very low, very atypical. The resulting likelihood ratio will therefore be much
larger than it would have been if a database of Australian English speakers had been used instead.
The system will overestimate the strength of the evidence because it is using data from the wrong
population. In the same way, a listener who is unfamiliar with a particular accent may tend to
misidentify people who speak with that accent.

We have discussed different accents as an intuitively easy thing to understand, but in general, any
time two or more speakers are relatively atypical in the same way, then the likelihood that a listener
will misidentify them will increase. The problem will be compounded if the speakers are actually
relatively similar to each other.

[99.1020] Duration and quality of speech material

Listeners have been found to be better at identifying speakers when more speech material is
available. For example, Ladefoged & Ladefoged (1980) and Rose & Duncan (1995) reported
correct-identification rates for familiar voices ranging between 31% for single words to 95% for
multi-sentence stretches of speech (see also Bull & Clifford, 1999b, p. 198; Solan & Tiersma,
2003, pp. 397-399).

Although experimental results were not conclusive, Bull & Clifford (1999a, p. 217) suggested that
exposure to variability in the speaker’s voice rather than pure duration of speech may be important
for increasing correct-identification rates (see also Bull & Clifford, 1984, pp. 105-106).
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There is, however, a potential problem due to what is known as confirmation bias (a form of
cognitive bias). A listener can make a speaker identification within a few seconds. Once they have
made an identification, they may then focus on similarities in the voices which help confirm their
identification, and downplay any differences which could point to their identification being
incorrect. This can occur at a subconscious level, the listener does not have to intend to be biassed.
Because of confirmation bias, if a listener’s initial identification is incorrect, listening for longer
may not result in them realising their mistake. There are a large number of research studies on
confirmation bias. A review is presented in Kassin et al. (2013).

Edmond & San Roque (2009) state:

The opinions of investigating police are not sanitised through repeatedly listening to tapes
or repeatedly observing incriminating images. In reality, this may introduce confirmation
bias, contaminate the evidence and endanger the accused. Repeated listening or watching
alone should not provide grounds for the admission of identification evidence or evidence
of similarity. (p. 22)

A witness may become more confident through repeated exposure without any
corresponding improvement in accuracy. ... Also, the fact that many of the identifications
made by ad hoc experts are contaminated by the circumstances in which the identification
is made should not be overlooked. (p. 31)

Loss of acoustic information due to factors such as background noise, poor quality recording, poor
quality playback, distortions due to transmission of the voice via a telephone system, and
mismatches between the quality of the known- and questioned-speaker recordings, also tend to
reduce correct-identification rates (Rathborn et al., 1981; Bull & Clifford, 1984, pp 114-116; Bull
& Clifford, 1999b, p 197; Rose, 2002, p 102).

Nolan et al. (2013) found that when telephone-quality recordings of pairs of speakers were
presented, they were perceived to be more similar than when good quality recordings of the same
pairs of speakers were presented. When one member of the pair was good quality and the other
member telephone quality, they were perceived to be more different.

In an identification task, however, it could be that since listeners know that people sound different
on the telephone versus in-person, listeners could attribute some genuine between-speaker
differences to the effect of the telephone, leading them to ignore differences and fail to distinguish
speakers.

Rathborn et al. (1981) obtained a correct-identification rate of 63% when the original exposure to
the target speaker was a good quality recording and the lineup recordings were good quality
recordings, but when both were recorded via a telephone the correct-identification rate was 45%,
and it was 42-45% when one was a good quality recording and the other a telephone quality
recording. McDougall et al. (2015) found better performance for good quality recordings versus
good quality recordings (75% correct), poorer for telephone recordings versus telephone
recordings (64% correct) and for good quality recordings for the original exposure versus
telephone quality recordings for the lineup (60% correct), and poorest for telephone quality
recordings for the original exposure versus good quality recordings for the lineup (32% correct).
The latter result is particularly noteworthy because it is likely to correspond to real-world
conditions and the way one would naively set up a voice lineup.
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Ohman et al. (2010) found no difference in performance for combinations of good quality and
mobile telephone quality, but this was because listeners were performing at chance levels even for
the good quality versus good quality condition.

Ohman et al. (2013) found that in an experiment in which the original exposure was to an angry
voice and the speakers in a lineup conducted immediately afterwards spoke with normal voices,
adult listeners never correctly identified the target speaker.

[99.1025] Time interval between exposure and lineup

In general, one would expect earwitnesses’ voice identification accuracy to decline as the time
interval between exposure to an unfamiliar voice and hearing the lineup increases. Research
results are somewhat mixed, perhaps because of other differences between the studies. Sherrin
(2015) reviews this topic.

Some studies suggest a relatively rapid decline in performance. For example, Ohman et al. (2013)
found that both adult and 11-13 year old children had 19% and 25% correct identification rates
immediately after exposure, but correct identification rates were at or below chance after a two
week delay (chance was 12.5%). Other studies suggest little decline over longer periods of time.
For example, Kerstholt et al. (2006) found correct identification rates of 24-32% with no
significant difference between a three week and an eight week interval.

[99.1030] Prior expectation bias

If a listener expects to hear a particular voice, then they are more likely to identify the voice they
hear as the voice they expected to hear. It is common in experiments on familiar voice recognition
for listeners to identify an unknown voice as the voice of a known person they expected to hear
(Rose, 2002, p. 104).

Ladefoged & Ladefoged (1980, p. 47) described the case of People v Kalkin: Mr Kalkin rented a
hotel room. Narcotics agents phoned that hotel room and arranged a narcotics deal with the person
who answered the phone. On the basis of his voice the narcotics agents identified the speaker as
Mr Kalkin. The defence were able to demonstrate the Mr Kalkin had not been in the room at the
time, and an associate of Mr Kalkin admitted to being the person who had spoken to the narcotics
agents. The narcotics agents appeared to have misidentified the voice because they had expected
Mr Kalkin to answer the phone.

Obviously there must be at least some degree of similarity between the expected voice and the
voice heard (had a woman answered the phone the narcotics agents would have been unlikely to
identify her as Mr Kalkin), but prior expectation can have a powerful effect on a listener’s
identification. To illustrate with some extreme examples:

1. If a listener is 100% certain that the voice they will hear will be the voice of a particular
person, then whatever the properties of the voice the listener will still be 100% certain that
the person they heard was the person they expected to hear — hearing the voice will have
had no effect on their identification.

2. If a listener is unable to distinguish two brothers on the basis of their voices, as far as
the listener is concerned they both sound the same; however, if for other reasons the listener
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is 90% certain that the voice they will hear will be that of brother A rather than brother B —
after hearing the voice they will still be 90% certain that it is the voice of brother A. Again
hearing the voice will have had no effect on their identification.

In these extreme examples the listener’s identification is dictated entirely by their prior
expectations; usually the situation will be less extreme but prior expectations can still have a
substantial influence.

A practice which has been criticised for being inherently suggestive is a speaker lineup of one,
called a show-up (Solan & Tiersma, 2003, pp 381-382, 390-393, 427-428). This is where an
earwitness is played a recording of only one person, or hears that person live, and that person is
the suspect. Show-ups cover any situation in which the earwitness is explicitly or implicitly asked
whether one voice they heard is that of one particular speaker. The earwitness could be a member
of the public, or could be a police officer. Eyewitness and earwitness show-ups are considered
suggestive because it is reasonable for the witness to infer that the reason they are being shown
only one person is that the police believe this person is guilty, and what the police require is for
the witness to make a positive identification in order to help convict that person.

Solan & Tiersma (2003, pp. 381-382) summarise a number of cases in which, for example, an
earwitness is asked to come to the police station and upon arrival hears a single suspect being
interviewed by a detective, and then identifies the voice of the suspect as the same as the offender
whom they had heard earlier. A number of US courts have found such identifications to be overly
tainted by suggestion (bias instilled in the earwitness by the police), and have ruled them
inadmissible. US courts have, however, typically allowed such suggestively-tainted identifications
when made by police officers (Solan & Tiersma, 2003, pp. 388-393).

[99.1040] Example of speaker recognition by a layperson

In State of Western Australia v Cameron James Mansell [WA Dist Ct, No 665 of 2008], a police
officer listened to a series of telephone intercepts and was subsequently part of a team conducting
a search of a suspect’s office. She stated that while conducting the search she heard the voice of
someone talking with one of her colleagues and immediately recognised it as the same as the voice
on the telephone intercepts. Audio recordings of the suspect talking during the search and on
subsequent occasions were available, but the prosecution did not have a forensic voice comparison
conducted by a forensic practitioner. Instead, the prosecution put the police officer on the stand to
give testimony related to her identification of the speaker. The defence called an expert witness to
summarise research on the validity of speaker recognition by laypeople in general.

Below [99.1050]-[99.1110], the factors listed above [99.880]-[99.1030] as being relevant to the
validity of speaker recognition by laypeople are related to the police officer’s written statements
and oral testimony (only the oral testimony was presented to the jury).

[99.1050] Variability between listeners

Some listeners are good at identifying speakers from their voices, some listeners are poor. In
theory it would be possible to have a listener participate in an experiment which would test their
ability to identify speakers from their voices under similar conditions to those in the case.
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No such tests were conducted and no evidence as to the validity of the police officer on this task
was presented. It is therefore unknown whether the police officer is good, average, or poor at
identifying speakers from their voices. The probability that her identification was correct or
incorrect is therefore unknown.

[99.1060] Listener certainty

In her written statements and oral testimony the police officer appeared to state with absolute
certainty that she believed that the questioned voice was the voice of the defendant. She made
definitive statements such as “I recognised this voice as the same voice I heard on the phone.”
(Statement of 17 September 2008, point 10; Statement of 3 April 2009, point 23). At no point did
she add modifiers such as “I’m almost completely sure” or “I’'m 95% certain”. Even when given
the opportunity to express less than 100% certainty she did not take it: Defence Attorney: “You
simply believe that it might be Mansell?” Police Officer: “I do believe it is Mr. Mansell.”
(transcript of oral testimony, p. 189, emphasis added).

Given the research findings on the relationship between a listener’s certainty in their identification
and their actual correct-identification rate, the police officer’s certainty in her identification should
not be equated with the probability that her identification is correct.

[99.1070] Listeners’ familiarity with speakers’ voices

The police officer stated that she “attended the Telephone Intercept Unit daily to listen to the calls
which had been intercepted” (Statement of 3 April 2009, point 12), that she “listened to all the
phone calls as listed in Annex A” (Statement of 3 April 2009, point 13), and that “Whilst listening
to the calls [she] became familiar with the accuseds [sic] voice.” (Statement of 3 April 2009, point
10). Annex A listed 33 calls over a period of 7 days, estimated as having a total duration of around
40 minutes. In her oral testimony the police officer stated that she listened to each recording at
least ten times (transcript of oral testimony, p. 135).

This amount of exposure to a voice would fall far below the exposure necessary to make a voice
highly familiar as would be the case for the voice of a relative or friend. This suggests that the
validity of the police officer’s identification of the questioned voice was likely to be substantially
less than the relatively good (but not perfect) validity of the identification of highly familiar
speakers such as relatives and friends, but substantially greater than a voice which had only
previously been heard for a few seconds or minutes.

There is however a flaw in the logic above — it assumes that all of the telephone intercepts in
question included recordings of the same questioned speaker. If in fact within this set of recordings
there are recordings of two or more questioned speakers (whose voices are sufficiently similar that
a listener may not realise that they come from multiple different speakers) then the police officer
would have been familiarising herself with multiple voices erroneously assuming that they were
the same voice. This would be detrimental to her ability to identify any one of these voices, and
especially detrimental to her ability to distinguish these voices from each other.
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[99.1080] Typicality of speakers’ voices

The police officer stated that “The accused general [sic] spoke in a calm voice which was quieter
and of a lower pitch than the other males that spoke.” (Statement of 3 April 2009, point 11). Note
that the police officer was actually referring to the questioned voice not the voice of the defendant.

Speaking in a calm voice, speaking quietly, and, for a male, speaking with a relatively low
fundamental frequency are not unusual.

The police officer did not identify any properties of the questioned voice which would make it
atypical with respect to the population in general, and when questioned on this agreed that there
were no atypical features in either the questioned voice or the defendant’s voice (transcript of oral
testimony, pp. 184-185). Her identification of the questioned voice as the same as the known
voice was therefore likely to be of poorer validity than if she had noted properties of the questioned
voice which would make it atypical.

[99.1090] Duration and quality of speech material

The recordings of the questioned speaker were made via intercepts of a mobile telephone. The
quality of the transmission of speech via mobile telephone systems is often relatively poor and the
recording quality of telephone intercepts is also often poor. In addition there was a mismatch
between the quality of the recording of the questioned voice heard by the police officer and her
hearing of the known voice which was in the physical presence of the speaker. These factors are
likely to make the police officer’s identification less likely to be correct than if she had heard both
questioned and known voices live or as high quality recordings.

The duration of time over which the police officer was exposed to the known voice was very short
because she made her identification immediately on hearing the voice: “Prior to entering an office
I heard the accused voice [sic] talking to [my colleague]. | recognised this voice as the same voice
I heard on the phone.” (Statement of 3 April 2009, points 22-23). “the voice | heard, before |
entered that room, I believed to be the same as the same voice that I heard on those phones.”
(transcript of oral testimony, p. 183).

Her identification was therefore less likely to be correct than if she had spent more time comparing
the properties of the known and questioned voices before coming to her definitive conclusion.
Such an immediate identification could, however, have been influenced by a prior expectation
bias which is not likely to be remedied by hearing the known voice for a longer duration of time
or hearing it on subsequent occasions.

[99.1100] Prior expectation bias

The police officer stated that she assisted at the execution of a search warrant, and that “Prior to
entering an office [she] heard the accused voice [sic] talking to [her colleague, and] recognised
this voice as the same voice [she] heard on the phone.” (Statement of 3 April 2009, points 22-23).
In her oral testimony, she stated that prior to the execution of the search warrants she knew that
Mr Mansell was the target of the investigation, that she believed that Mr Mansell was the speaker
on the telephone intercepts, and that she knew she would be searching the office and home of Mr
Mansell (transcript of oral testimony, pp. 183-184).
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It would seem reasonable to assume that when a police officer executes a search warrant they have
a high expectation of encountering a suspect, and, if they have already been working on a
particular case, have a high expectation of encountering a particular suspect. (The key issue is the
prior expectation that a person encountered at the scene of a search will be the suspect, rather than
the expectation that the suspect will be at that particular location at that particular time.) It may
therefore be reasonable to assume that before arriving at Mr Mansell’s office the police officer
had a high expectation of encountering the speaker whom she had heard on the telephone intercept
recordings. If this is the case, then the fact that she immediately identified Mr Mansell’s voice as
the same as the questioned voice will have been heavily influenced by her prior expectation that
she would hear the same voice.

There is ample evidence in the police officer’s written Statements to suggest that she did have a
bias towards identifying Mr Mansell as the speaker of the questioned voice: She continually
referred to the questioned voice on the telephone intercept recordings as the voice of the accused,
e.g., “These telephone calls included conversations between [third party] and the accused.”
(Statement of 17 September 2008, point 5). By listening to the recordings “I became familiar with
the voice of a male person who I now know to be the accused” (Statement of 17 September 2008,
point 6). “Whilst listening to the calls I became familiar with the accuseds voice [sic].” (Statement
of 3 April 2009, point 10). “The accused general [sic] spoke in a calm voice which was quieter
and of a lower pitch than the other males that spoke.” (Statement of 3 April 2009, point 11). Annex
A also inappropriately identified the person making and receiving the intercepted telephone calls
as Mr Mansell. In her oral testimony, the police officer affirmed that prior to making her speaker
identification, she already believed the voice on the telephone intercepts to be the voice of Mr
Mansell (transcript of oral testimony, p. 186).

[99.1110] Conclusion

The police officer was either correct or incorrect in her identification of Mr Mansell as the speaker
she had heard on the telephone intercept recordings. The discussion above merely provides a guide
to factors which should be considered in coming to an opinion as to the likelihood that the police
officer’s identification was correct, and highlights the multiple problems with this sort of
testimony. This was not a true earwitness situation, and, in our opinion, a forensic voice
comparison with a demonstrated degree of validity and reliability would have been a much better
way to proceed.

[99.1120] Further reading

Reviews of speaker recognition by laypeople in a legal context are presented in Solan & Tiersma
(2003), Edmond & San Roque (2009), Laub (2010), Edmond et al. (2011a,b), and Sherrin (2015).
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DISPUTED UTTERANCE ANALYSIS

[99.1500] Introduction
Certain words of phrases sound similar to each other, for example:

e “thirteen” — “thirty”
e “fourteen” — “forty”

o “fifteen” — “fifty”

o “S§”_“F”

e “C”—“Z” (in American English)
o “G” -1

o “N”—“M”

e “excuse me while I kiss this guy” — “excuse me while I kiss the sky”
e “holding back the ears” — “holding back the years”
o “Icandoit”—“I can’t do it”

Such words and phrases can be mistaken for each other, even under good listening conditions.
The potential to mishear such words and phrases increases under poorer conditions such as if there
is background noise or if the speech has been transmitted through a telephone system, also if the
speaker is mumbling or speaking quickly, etc. Under poor conditions, listeners can even confuse
words of phrases that under good conditions sound quite different.

Differences between the accent of the speaker and the listener can also lead to the listener hearing
something different than what the speaker intended. For example:

o A Southern US speaker’s pronunciation of “pen” may be heard as “pin” by speakers of
other accents of English.

A Brooklynite’s pronunciation of “bird” may be heard as “Boyd” by speakers of other
accents of English.

e An American’s pronunciation of “writing” may be heard by Anglophone Canadians as
“riding” (in Canadian English the vowel sounds in “riding” ['1arrm] and “writing”
['1a10m] are different).

A Newfoundlander’s pronunciation of “boy” may be heard as “buy” by speakers of other
accents of English.

A New Zealander’s pronunciation of “late tackle” may be heard as “light tickle” by
speakers of other accents of English.

A speaker from the southeast of England may pronounce “book™ in a way which is heard
as “buck” by speakers from the north of England.

Listening to speech is not simply a bottom-up process of decoding the incoming acoustic signal
into phonemes as building blocks for words. Listening to speech is also a top-down process in
which the listener uses contextual information about what they are likely hear. If a waiter asks
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what you would like to drink and you answer “ko-ra” instead of “cola”, the waiter will probably
not even notice your mispronunciation. One would probably have to emphasise the last word in
“have a nice May” for a listener not to hear it as “day”. Human communication has evolved to use
a combination of top-down and bottom-up listening. Combining top-down information with
bottom-up information makes understanding speech more efficient. Under poor listening
conditions, in which bottom-up information is compromised, listeners rely more on top-down
information. If listeners did not use top-down information, speakers would have to speak more
clearly and communication would be more laborious. Top-down listening makes communication
more efficient, but it can lead to mishearing when what the speaker says has a low probability
with respect to what the listener expects to hear. What is heard can be highly dependent on what
the listener expects to hear.

[99.1510] Approaches to disputed utterance analysis

Some practitioners conduct disputed utterance analyses by listening. They use high quality audio
equipment to listen to the recording of the disputed utterance, and make a subjective judgement
based on what they hear. This approach is inconsistent with the new paradigm for the evaluation
of forensic evidence. It is susceptible to cognitive bias. If different practitioners hear different
things and their abilities have not been empirically tested under conditions reflecting those of the
case, there is no principled way to choose between them.

Relying on the testimony of what laypeople (such as police officers) hear, or playing the disputed
utterance to the trier of fact and asking them to decide is also highly problematic. Laypeople are
susceptible to cognitive bias, and are likely to be listening using relatively poor quality audio
equipment in acoustically non ideal environments (e.g., laptop speakers in an office, or a
loudspeaker system in a courtroom).

In addition, what anybody hears, whether they be layperson or expert, is irrelevant. The question
of interest in a disputed utterance analysis is not what was heard, but what was said. The best way
to evaluate what was said is not via listening, but via quantitative acoustic measurements made on
relevant data, and statistical analysis of the resulting measurements. The question for the forensic
practitioner to address is:

1. What is the probability of obtaining the acoustic properties of the disputed utterance if what
was said is what the prosecution contends was said?

Versus

2. What is the probability of obtaining the acoustic properties of the disputed utterance if what
was said is what the defence contends was said?

Also, the performance of the system used to calculate the strength of the evidence should be
empirically assessed under conditions reflecting those of the disputed utterance in the case.

Disputed utterance analysis will not be effective as distinguishing words that are true homophones
(they sound exactly alike). These could include, for example, “know” versus “no”, “sun” versus
“son”, and “cite” versus “sight” versus “site”.

Below, we provide two examples of disputed utterance analyses based on real cases. These are
not analyses which were actually conducted and presented to the courts, they were conducted for
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research purposes. The analyses calculate likelihood ratios on the basis of relevant data,
guantitative acoustic measurements, and statistical models, and the results of empirical testing of
performance are presented.

A topic somewhat related to disputed utterance analysis is the preparation of transcripts for use in
legal proceedings, that topic is discussed in Transcripts in the legal system [100] (Fraser, 2010).

[99.1520] Example 1: VOT and formants

In a Swedish case [n° B1293-07 of Hovrétten for nedre Norrland, 2008-02-26], a word on an audio
recording of a police interview with an eye witness (a female Swedish speaker) was disputed as
being either the pronoun “dom” [dom] THEY or the proper name “Tim” [thim]. The quality of the
recording was reasonable but not particularly good. It had originally been recorded on analogue
equipment.

The analysis below is described in greater detail in Morrison et al. (2014). Thanks to Jonas Lindh,
the forensic practitioner in the case, for providing the data and performing the acoustic analysis
reported below.

[99.1530] Hypotheses
We calculated a likelihood ratio based on the following hypotheses:

1. The speaker said “dom”.
2. The speaker said “Tim”.

The words “dom” [dom] and “Tim” [thrm] differ in both the first consonant and in the vowel (the
last consonant is the same).

Both [d] and [t"] are alveolar plosives: a closure is made between the tip of the tongue and the
alveolar ridge, the air pressure behind this closure is increased, then the closure is released. [d] is
a prevoiced plosive: the vocal folds start vibrating before the closure is released. [t] is a voiceless
aspirated plosive: the vocal folds do not start vibrating until after the closure has been released
and there is turbulent airflow before the vocal folds start vibrating. See section [99.520].

The articulations of the [o] and [1] involve differences on the position of the jaw, tongue, and lips,
resulting in the vowels having different formant values. See section [99.460].

[99.1540] Relevant data

The relevant data, in addition to the recording of the disputed word itself, consisted of 29
undisputed tokens of “dom” and 16 undisputed tokens of “Tim” spoken by the same speaker in
the same recording.
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[99.1550] Acoustic analysis

Lindh measured the voice onset time (VOT, the time between the release of the closure and the
beginning of voicing, see section [99.520]) of the disputed word, and of the undisputed tokens of
“dom” and “Tim”. A histogram of the resulting VOT values is shown in Figure 27 top panel.

Lindh also measured the first and second formant values (F1 and F2) in the middle of the vowel
in the disputed word and in the middle of the vowel in each undisputed token of “dom” and “Tim”.
See section [99.460]. A scatterplot of the vowels’ F1 and F2 values is shown in Figure 28.

FIGURE 27. Histogram of VOT measurements made on the plosives in the
undisputed “dom” and “Tim” tokens. Top panel: Original VOT values. Bottom
panel: Transformed VOT values. The vertical green line indicates the measured
VOT of the plosive in the disputed word.
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FIGURE 28. Scatterplot of F1 and F2 measurements made on the vowels in the
undisputed “dom” and “Tim” tokens. The green cross indicates the measured F1
and F2 of the vowel in the disputed word.
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[99.1560] Statistical analysis

The VOT values for the undisputed “dom” and “Tim” tokens clearly did not have Gaussian
distributions. A transformation was applied so that the distribution of the transformed data had
more Gaussian distributions. Such transformations are standard statistical techniques (in this case
the transformation used was an arctangent function). The transformed data are shown in Figure
27 bottom panel.

Morrison et al. (2014) reported the details of four statistical analyses. Here we only report the
results of a Bayesian analysis using uninformative priors. Such an analysis is intended to deal with
the problem of having relatively little data to train the statistical models. The analysis was based
on three-dimensional feature vectors consisting of transformed VOT, F1, and F2 (hereinafter
[VOT, F1, F2] feature vectors). A “dom” model and a “Tim” model were trained on the feature
vectors from the undisputed “dom” and “Tim” tokens. The likelihood of the [VOT, F1, F2] feature
vector from the disputed word was then calculated for the “dom” model and for the “Tim” model,
and the former likelihood divided by the latter to calculate a likelihood ratio. See section [99.230].
In a Bayesian analysis Bayes factor rather than likelihood ratio would be the technically correct
term, but for simplicity we will continue to use the term likelihood ratio.

[99.1570] Results

An empirical test of system validity was conducted using a cross-validation procedure, i.e., by
holding out one token from the training data, using the remaining data to train the models, using
those models to calculate a likelihood ratio for the held out token, and cycling through holding out
each of the tokens in the training data (see section [99.820]). Cyr was very close to zero and Tippett
plots looked like vertical lines far apart from each other. Whether the empirically demonstrated
level of validity was good enough was not our concern in this case. Our concern was whether,
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given the small amount of training data, the very very good empirically demonstrated level of
validity was misleading. That is why in Morrison et al. (2014) we explored several models for
dealing with small amounts of training data, and here we only report the results of the Bayesian
analysis using uninformative priors.

Based on the results of the Bayesian analysis with uninformative priors, the probability of
obtaining the measured acoustic properties of the disputed word is approximately 3 billion times
greater if the speaker had said “dom” than if the speaker had said “Tim”.

[99.1580] Example 2: Fricative spectra

Before reading this example, we recommend that you listen to the three audio recordings posted
at <http://expert-evidence.forensic-voice-comparison.net/#audio>. Write down what you think is
said in each recording. This should help you appreciate that what is said in speech recordings is
not always clear and why there can be disputes about what was said.

In 1995 in New Zealand, David Bain was convicted of murdering his family. The conviction was
subsequently appealed and he was found not guilty at a retrial in 2009 (Bain v R [2009] NZSC 16;
see also Innes, 2011). The prosecution contended that Bain killed his family, established an alibi,
then returned home and made a call to emergency services. The defence contended that his family
was killed while he was out, he discovered them dead upon his return, and then he made the call
to emergency services.

The call to emergency services was recorded. The quality of the existing versions of the recording
is poor. Bain was gasping for breath. The telephone system was an older analogue system, not a
newer digital system. The telephone call was originally recorded on an analogue reel to reel system,
and was then copied to an analogue microcassette. The microcassette went missing for a number
of years, but resurfaced before the retrial. A digital copy of the microcassette was then made.
There is a 50 Hz hum on the recording (such hums are due to interference from the mains
electricity supply).

Before the retrial, a police officer listened to the recording and thought he heard Bain utter a phrase
which amounted to a confession. This was disputed by the defence.

A number of forensic practitioners were asked to analyse the recording. Most gave an opinion
based on listening to the recording. There was a lack of agreement between different practitioners,
and the court ruled that the jury would not be allowed to hear the disputed-utterance portion of the
recording, nor any reference to that part of the recording, nor what the police officer thought he
heard. One forensic practitioner, Philip Rose, pointed out that what anybody heard was irrelevant,
that what was relevant was what was said, and that the appropriate way to assess this was to
calculate a likelihood ratio based on an acoustic and statistical analysis. Rose, however, did not
conduct such an analysis at the time.

In a post-trial research activity, Fraser et al. (2011) conducted experiments in which mock jury
members were asked to listen to the disputed utterance in the Bain recording and say what they
heard. Some listeners were then exposed to testimony that what was said was what the prosecution
contended was said, and others were exposed to testimony that what was said was something else.
Almost no one heard what the prosecution contended was said on initial listening, but after being
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exposed to the testimony, the group who heard the prosecution contention were much more likely
to report hearing what the prosecution contended was said.

The study demonstrated the power of suggestion with respect to what listeners hear. This is an
auditory version of ambiguous visual images that can be seen as one thing or another, e.g., a duck
versus a rabbit, see Figure 29. One may perceive the image in one way and be unable to perceive
it the other way even when the alternative is pointed out, then one may suddenly shift to perceiving
it the other way and then have difficulty switching back. If before one sees the image, one is
primed by a suggestion about what one is about to see, one will tend to perceive the image in the
way suggested, e.g., if you hear a quack and then see the image you are more likely to perceive it
as a duck. Confirmation bias can then set in, which is why it can be difficult to switch to seeing
the image as a rabbit. Likewise, when one of primed to hear an ambiguous acoustic signal in a
particular way, one is more likely to perceive it that way and have difficulty perceiving it in
another way.

FIGURE 29. Ambiguous visual image (from Fliegende Blétter, 23 October 1892).

We have deliberately delayed telling you what the prosecution contended that Bain said in the
disputed utterance. They contended that he said “I shot the prick.” The defence never formally
proposed an explicit alternative other than not “I shot the prick”, but an alternative that was
suggested by some forensic practitioners is “I can’t breathe.” Go back and listen to the three audio
recording again and see if you can hear them as either “I shot the prick” or as “I can’t breathe.”
You may be able to experience something akin to the experience of looking at an ambiguous visual
images. Perhaps you did not hear either of “I shot the prick” or “I can’t breathe” before they were
suggested to you, but now you may be able to make yourself sometimes hear “I shot the prick”
and sometimes hear “I can’t breathe.” In recording number 1 the speaker was actually saying “I
can’t breathe”, and in recording number 2 the same speaker was actually saying “I shot the prick.”
We do not know what was said in recording number 3; it is the actual disputed utterance from the
Bain case.

Below we describe a preliminary analysis of the disputed utterance from the Bain case. We
calculate a likelihood ratio based on relevant data, quantitative acoustic measurements, and
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statistical models. The validity of the system is also empirically tested. The analysis is described
in greater detail in Morrison & Hoy (2012).

[99.1590] Hypotheses

Rather than try to analyse the whole of the disputed utterance, we focussed on the first consonant
in the word which is contended to be either “shot” or “can’t”. Thus we calculated a likelihood
ratio based on the following hypotheses:

1. The consonant spoken by Bain was /J/.
2. The consonant spoken by Bain was /k/.

The consonant in the disputed utterance was clearly a fricative. /f/ is realised as a voiceless
postalveolar fricative [f]. /k/ is normally realised in this context as a voiceless aspirated velar
plosive [kt], but if someone is gasping for breath, it can be realised as a voiceless palatal fricative
[¢c] — complete closure is not achieved and the constriction between the tongue and the roof of the
mouth is further forward. See Figure 15 in section [99.450], and the description of fricatives in
section [99.500]. The postalveolar place of articulation is just behind the alveolar ridge, and palatal
place is between the postalveolar and the velar places, so the articulations of [f] and [¢] are actually
quite similar (Magnetic Resonance Imaging videos and animations of these speech sounds are
available at <www.seeingspeech.ac.uk/ipachart/>, still x-ray tracings can be found in Laver, 1994,
p 246).

[99.1600] Relevant data

The recording of the call made to emergency services did not include undisputed tokens of both
[/1 and [¢]. Recordings were made of another New Zealand English speaker who happened to be
approximately the same height and age as Bain had been. The speaker mimicked Bain’s out of
breath speaking style and was recorded via a landline telephone. He said each phrase “I shot the
prick” and “I can’t breathe” multiple times. The recording of some utterances were excluded due
to technical problems, leaving 41 usable tokens of [[] and 44 usable tokens of [¢].

[99.1610] Acoustic analysis

We measured the spectrum of each of the undisputed tokens of [[] and [¢], and of the consonant
in the disputed utterance. The spectra were characterised using cepstral coefficients, similar but
not exactly the same as MFCCs (see section [99.720]). A single spectral measurement made over
the whole duration of the fricative, and a hertz rather than a mel frequency scale was used over
the frequency range 0 to 3675 Hz. The coefficient values were amplitude normalised, and feature
vectors consisting of the 1st through 8th cepstral coefficients were used for statistical analysis.
Figure 30 shows the resulting smoothed spectra (the drops in amplitude at low and high
frequencies are due to the telephone bandpass, the lack of low frequency drop for the disputed
consonant is due to the 50 Hz hum).
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FIGURE 30. Smoothed spectra of undisputed tokens of [[] (red lines), undisputed
tokens of [¢] (blue lines), and the consonant in the disputed utterance (thicker
green line).
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[99.1620] Statistical analysis

Two multivariate Gaussian distribution models were trained, one trained on the feature vectors
from the undisputed tokens of [[] and the other trained on the feature vectors from the undisputed
tokens [¢]. The likelihood of each model were then evaluated at the value of the feature vector
form the disputed consonant, and the likelihood from the first model divided by the likelihood
from the second model to calculate a likelihood ratio (see section [99.230]).

The validity of the system was empirically tested using a cross-validation procedure. One
undisputed token was held out, all the other undisputed tokens were used to train the models, then
the likelihood ratio for the held out token was calculated. This was repeated for every undisputed
[/] token and every undisputed [¢] token. See section [99.820].

[99.1630] Results

The results of the validation test are represented as the Tippett plot in Figure 31. The Cy, value
was 0.172. Both the Tippett plot and the Cy, value indicate a good validity.

The likelihood ratio value calculated for the disputed consonant was approximately 1/31,000. The
probability of obtaining the measured acoustic properties of the disputed consonant was 31,000
times greater if Bain had said [¢], as in “can’t” than if Bain had said [[] as in “shot”.

This analysis was called a preliminary analysis, and there are caveats which should be noted. The
training data came from a different speaker, not from Bain, and the recordings conditions were
not exactly the same as those in the Bain case. A potential way to improve on the analysis
described here would be to record multiple speakers. The statistical models would then be trained
on data from multiple speakers, and cross-validated testing would be conducted by holding out all
the recordings of a speaker from the training set. The recordings could be directly recorded or
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processed so that they more closely reflect the recording conditions of the disputed utterance.
Statistical mismatch compensation techniques could also be applied.

FIGURE 31. Tippett plot showing the results of the empirical validation of the
system applied to the disputed utterance in the Bain case. The vertical green line
indicated the likelihood ratio value calculated for the disputed consonant.
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OTHER BRANCHES OF
FORENSIC SPEECH SCIENCE

[99.1700] Introduction
Below we briefly describe other branches of forensic speech science:

e Lie detection [99.1710]
o Intoxication detection [99.1720]

Voice disguise in forensic casework [99.1730]
Speaker profiling [99.1740]

Language analysis for determination of origin (LADO) [99.1750]

[99.1710] Lie detection

Listeners may be able to detect whether speakers are lying or not at levels slightly above chance.
The situation may be somewhat akin to speaker recognition by laypeople. Some listeners may be
better at detecting lies than others. Some speakers may be better at concealing lies than others.
Familiarity of the listener with the speaker may be relevant.

Claims of ability to detect when a speaker is lying would have to be empirically validated under
conditions reflecting those of the case under investigation. In forensically relevant situations the
speaker may be under emotional stress, e.g., even an innocent person being questioned by police
may feel stressed, and this is likely to affect a speaker’s speech. To be relevant to such situations,
empirical validation would have to test speakers under stressed conditions. See section [99.290]ff.

A number of products purport to automatically detect when a speaker is lying or purport to assist
a human operator to detect when a speaker is lying. The products may overtly claim to detect
stress rather than lying, they may be marketed as voice stress analysers, but it may be implied that
they are lie detectors.

Several papers have reported on theoretical and empirical assessments of commercial systems
whose explicit or implied function is lie detection via acoustic analysis of voice signals (see the
following papers and reference cited therein: Damphousse et al., 2007; Eriksson & Lacerda, 2007;
Hollien et al., 2008; Harnsberger et al., 2009; Horvath et al., 2013). Claims of scientific bases for
how the systems worked were found to be spurious. Such systems may decrease the incidence of
lying via a placebo effect whereby speakers who believe an effective lie-detection system is in use
are less likely to lie. Beyond that, none of the published studies found any substantial evidence in
support of the hypothesis that automatic systems performed at levels above chance or that human-
operated systems performed at levels above those for unaided listening.

One paper (Eriksson & Lacerda, 2007) may have strayed from a sober scientific evaluation and
implied that the manufacturer of one product was perpetrating a fraud. The manufacturer
threatened to sue the publisher of the journal in which the paper was published, and the publisher
removed the paper from its website. The paper was subsequently posted at multiple locations on
the internet by multiple third parties.
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Unless empirical demonstration of an adequate level of validity and reliability is obtained, we do
not recommend the use of human-listener, acoustic, or automatic approaches which purport to
detect lies on the basis of a speaker’s speech.

[99.1720] Intoxication detection

Slurred or disfluent speech is often taken as an indication that the speaker is intoxicated. There
could, however, be other reasons for slurred speech other than alcohol or illegal drugs, including
the effects of fatigue, dental anaesthesia, prescription drugs, head trauma, stroke, and motor
neuron disease.

Disfluencies include: Additions of phonemes or words, hesitations or pauses, repetitions,
substitutions of phonemes or words, voicing/devoicing substitutions, omissions of phonemes or
words, distortions, and lengthening (Hollien et al., 2001).

Hollien et al. (2014) reviewed literature on the effects of alcohol intoxication on speech. They
pointed out that factors that would need to be controlled in research include the speaker’s drinking
habits and their level of intoxication. Also that it would be necessary to compare recordings of the
same individual’s speech when they are intoxicated versus when they are sober. In the literature
review, Hollien et al. found that:

o Listeners tended to overestimate the level of intoxication of speakers who were mildly
intoxicated, but underestimate the level of intoxication of speakers who were severely
intoxicated.

e Sober speakers could deliberately speak in a way that listeners perceived as severely
intoxicated, and even severely intoxicated speakers could deliberately speak in a way that
made listeners perceive them as less intoxicated.

o Whether speakers were habitually light, moderate, or heavy drinkers had little effect on
listeners’ perception of their level of intoxication.

¢ As intoxication level increased, there were moderate increases in fundamental frequency
(f0), moderate decreases in speaking rate, and large increases in disfluencies.

Baumeister et al. (2012), however, found that although the general trend was for fO to increase
with level of intoxication, some individuals’ fO actually decreased as intoxication level increased.
No single f0-based model would therefore be effective for predicting an individual speaker’s
levels of intoxication. Schiel & Heinrich (2015) also found substantial between-speaker variability
in the relationship between various types of disfluencies and level of intoxication.

[99.1730] Voice disguise in forensic casework

Clark & Foulkes (2007) reviewed the literature on voice disguise in forensic voice comparison
casework.

Most cases did not involve voice disguise. Estimates of the percentage of cases involving voice
disguise in different laboratories ranged from 2.5% to 25%. In some types of cases such as
blackmail and ransom demands, however, the speaker has a high expectation of being recorded
and probably does not want to be identified, hence voice disguise is the norm in such cases
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(laboratories reporting higher rates of voice disguise probably had more cases of this type).
Although voice disguise is more common in questioned-speaker recordings, in some cases a
speaker may attempt to disguise their voice when they know that they are being recorded for a
known-speaker recording, e.g., when they know that they are the speaker in the questioned-
speaker recording and they spoke normally in the questioned-speaker recording.

Common forms of voice disguise in casework included: using creaky voice (very low fundamental
frequency), falsetto (very high fundamental frequency), whisper, pinching one’s nose, placing an
object (e.g., a pencil) between one’s teeth, and affecting an accent. Speakers often had difficulty
maintaining a disguise. Speakers who affected an accent, for example, would revert back towards
their usual accent. Such forms of disguise are usually readily identified as disguise, especially if
they are not consistently maintained. Attempts at mimicking other particular speakers or particular
foreign accents seldom convince listeners that the speaker really is the person they are
impersonating or really is a first-language speaker of the foreign accent they are feigning, but may
be reasonably effective means of disguise. Electronic voice disguise, i.e., using signal processing
on a standard computer or dedicated hardware, was rare, but its prevalence was expected to
increase as the technology became more readily accessible.

Voice disguise has been found to negatively affect the performance of automatic forensic voice
comparison systems (e.g., Meuwly, 2001, 88.7; Kiinzel et al., 2004; Zhang & Tang, 2008; Perrot
& Chollet, 2008). Research has also been conducted on automatic detection and classification of
voice disguise (e.g., Perrot et al., 2009; Perrot & Chollet, 2012; Wu et al., 2014). For the purposes
of conducting casework, voice disguise should be treated like speaking style or recording
condition: The system should be trained and must be tested using recordings which include the
disguise and any mismatches, e.g., a particular type of disguised speech in the questioned-speaker
recording versus normal speech in the known-speaker recording.

Mohammadi & Kain (2017) present an overview of signal-processing systems for converting a
speaker’s voice so that it sounds like the voice of another particular speaker. At present, the ability
of real-world systems to do this convincingly is substantially lower than that of their fictional
counterparts.

For a relatively broad review of voice disguise in forensic contexts, including topics not covered
here, see Perrot & Chollet (2012).

[99.1740] Speaker profiling

In contrast to forensic voice comparison in which a known-speaker recording and a questioned-
speaker recordings are compared and the hypotheses to be addressed are same-speaker versus
different-speaker, in speaker profiling there is only a questioned-speaker recording and the
guestion concerns what one can we tell about the speaker based on this recording. Speaker
profiling is usually performed for investigative purposes, e.g., to help investigators narrow the
potential pool of suspects. A number of things can potentially be inferred from a recording of a
speaker’s voice, including the speaker’s height, age, and seX, the social, regional, and/or foreign
accent spoken, and the language spoken. The first three are physiological and the remainder
learned.

On average, adult males have more massive vocal folds and longer vocal tracts than adult females
leading to males having lower fundamental frequency (f0) and lower formant frequencies than
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females. The perceptual differences are usually so obvious that the services of a forensic speech
scientist are not needed. Sometimes, however, the sex of the speaker is not obvious and an analysis
of properties such as f0 and the formant frequencies of different vowels may be informative. This,
in theory, would be particularly amenable to acoustic and statistical analysis leading to a likelihood
ratio. A speaker’s sociological gender should be distinguished from a speaker’s physiological sex.
A forensic phonetician may be able to identify speech patterns often associated with a gay accent,
but this would not necessarily be indicative of the speaker’s actual sexuality.

There are large changes in speech properties through childhood and adolescence due to physical
changes. These may allow a relatively accurate estimate of speaker age. A questioned-speaker
recording of a child or adolescent is more likely to be a recording of a victim rather than an
offender. On average, fO for adult males gradually decreases to around age 40 then gradually
increased from around age 50. For adult females the pattern is a gradual decrease in fO which may
accelerate at menopause but which may increase again in older age. Age estimate for adults based
on speech is, however, of poor accuracy irrespective of whether an auditory or an acoustic and
statistical analysis approach is used. The underlying problem is that the correlation between age
and speech properties is slight.

Listeners tend to associate lower fO and lower formants with taller speakers, but these acoustic
features have not been found to be accurate predictors of speaker height. The accuracy of height
estimation based on voice recordings is therefore poor irrespective of whether an auditory or an
acoustic and statistical analysis approach is used.

Identification of social and regional accents usually depends on the knowledge and skill of a
phonetician or dialectologist who has (via study or experience) some familiarity with the accent
that happens to be being spoken. One individual may be an expert on English accents in the British
Isles, another may be an expert on English accents in North America, and yet another an expert in
Chinese languages and dialects. An auditory approach is almost always used. An acoustic and
statistical analysis approach would be difficult to implement because of the difficulty of obtaining
appropriate training data, especially since a priori one does not known which accents might be
relevant. Also, in addition to the properties of the speaker’s voice, what the speaker says, e.g.,
vocabulary and grammatical patterns, can provide useful information. A practitioner of speaker
profiling will therefore analyse linguistic information as well as speech properties. Having
identified an accent typical of a general region, the practitioner may be able to consult existing
descriptions or data, or experts on accents of that region, or laypeople from that region and further
refine the speaker’s accent to a more local area.

Foreign accents can be challenging. It may be quickly determined that the speaker has a foreign
accent, but identifying their first language (L1) may be harder. Even untrained English speakers
can fairly accurately identify Spanish accented, French accented, and German accented English,
because they are familiar, but have little to no idea about the vast majority of possible foreign
accents. The task is complicated by the fact that foreign accents can be stronger or weaker, and
can also be mixed with regional accents. A practitioner of speaker profiling will have to have some
familiarity with the particular foreign accent, at least enough to narrow down the possibilities. A
practitioner may, for example, be sufficiently familiar with Slavic accented speech to hypothesise
that a speaker has a Slavic accent, but not be sufficiently familiar with Slavic accents to identify
which Slavic language might be the speaker’s first language. They would, however, be in a
position to find other resource, experts, or laypersons who may be able to help with either
identifying the particular Slavic language or disconfirming the Slavic-language hypothesis.
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Which language is being spoken is something which is highly amenable to automation, at least at
a screening level. There are thousands of different languages, so no one individual can be familiar
with all of them. An automatic language recognition system can be trained on a large number of
languages, and the probabilistic output of the system used to decide which human expert to refer
the case to. The limitation is that the automatic system will not be trained on all languages (data
from all languages will not be available for training), and when presented with a language it was
not trained on it may output a fairly high probability for one of the languages it was trained on.
Once a hypothesis as to the language spoken has been developed, the practitioner may be able to
consult speakers of that language. L1 speakers of a given language (and even second-language,
L2, speakers) are excellent at identifying that language, and are usually also familiar with and
therefore good at identifying neighbouring languages.

Compared to forensic voice comparison and disputed utterance analysis, speaker profiling is much
more difficult (if not impossible) to conduct using relevant data, quantitative measurements, and
statistical models, and much more difficult to validate. Forensic phoneticians and linguists would,
however, be expected to be able to and to actually provide detailed justifications for their
conclusions. Speaker profiling may be a helpful investigative tool, but the results should be used
with caution.

For more detailed reviews of speaker profiling, see: Jessen (2007, 2010), Schilling & Marsters
(2015).

[99.1750] Language analysis for determination of origin (LADO)

Language analysis for determination of origin (LADO) can be considered a form of speaker
profiling, but concentrating on the question of what a speaker’s speech (accent) and their language
use (dialect) can tell us about their place of origin. Rather than being only investigative, the
purpose is usually to inform decision-makers in asylum or refugee hearings. Also, rather than
having only a recording to work from, the practitioner may be able to directly interview the asylum
seeker.

Guidelines published by a group of linguists (Language and National Origin Group, 2004) state:

Language analysis can not be used reliably to determine national origin, nationality or
citizenship. ... In some cases, language analysis CAN be used to draw reasonable
conclusions about the country of socialization of the speaker. ... The way that people speak
has a strong connection with how and where they were socialized: that is, the languages
and dialects spoken in the communities in which people grow up and live have a great
influence on how they speak.

Identification of languages and social and regional dialects has already been discussed in 0. In
LADO, forensic practitioners usually work with informants who are ideally L1 speakers of the
language the asylum seeker claims as their L1. In LADO, the situation is complicated by multiple
factors: The speaker may genuinely have the background they claim, or may be deliberately
attempting to deceive by speaking in a language and accent/dialect that does not reflect their true
background. The speaker may be a speaker of a non-standard accent/dialect which may be
unfamiliar to both the forensic practitioner and their informants. Speakers may accommodate the
way they speak to the way the interviewer speaks, e.g., rather than speaking in their local
accent/dialect the speaker may approximate a more prestigious standard form of the language used
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by the interviewer. In some parts of the world it is common for speakers to have a local language
as their L1, and have some degree of ability to use a more widely spoken regional language and/or
a national language. These being mutually unintelligible languages rather than accents/dialects.
The speaker may be interviewed in a more widely spoken language rather than in their first
language, no L1-speaker interviewer/informant of the claimed L1 being available. Asylum seekers
may have over a long period of time mixed with people from other language communities and
consciously or unconsciously altered the way they speak. Some readers may be familiar with this
phenomenon, e.g., somebody from Britain moves to Canada and lives there for many years, most
people in Canada think they still have a British accent, but when they go back to Britain everyone
thinks they have an American accent.

There are a number of controversies associated with LADO. Forensic practitioners and L1
informants may be exposed to biasing information. Forensic practitioners may express
conclusions with absolute confidence. There is debate about who is qualified to perform LADO:
L1 speakers without extensive linguistics training, linguists who have studied the language (but
who may not be L1 speakers or have forensic expertise), forensic linguists, forensic linguists and
L1 speakers working together. Cambier- Langeveld (2010) argues that:

you can never just assume that a person is capable of making accurate judgments on
regional origin on the basis of speech, no matter what his/her qualifications or background,
and no matter how confident he/she is. You can only be sure that a person is capable of
making accurate judgments within a particular language area after you have tested a person
on this particular task.

For a more detailed review of LADO, see Schilling & Marsters (2015).
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Abbreviations
ABRE  American Board of Recorded Evidence

AFSP Association of Forensic Science Providers

bit binary digit
cf compare with (Latin “confer”)
Cir log-likelihood-ratio cost

DNA deoxyribonucleic acid
E evidence
EWCA England and Wales Court of Appeal

fO fundamental frequency

F1 first formant

F2 second formant

F3 third formant

F4 fourth formant

FBI Federal Bureau of Investigation

FRE Federal Rule of Evidence
ff following

GIGO  garbage in garbage out
GMM  Gaussian mixture model

GMM-UBM Gaussian mixture model - universal background model

Hg different-origin hypothesis or different-speaker hypothesis
Hs same-origin hypothesis or same-speaker hypothesis
Hz hertz

IAFPA International Association for Forensic Phonetics and Acoustics

1Al International Association for Identification
1AVI International Association of Voice Identification
IPA International Phonetic Association or International Phonetic Alphabet

i-vector identity vector

k kilo-
L1 first language
L2 second language
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log logarithm

logio log base ten

log log base two

LADO Language analysis for determination of origin

LDA linear discriminant analysis

LR likelihood ratio

LRq likelihood ratios derived from different-speaker comparisons
LR likelihood ratios derived from same-speaker comparisons
MFCC  mel-frequency cepstral coefficients

ms millisecond(s)

N number of different-speaker comparisons

NICA Northern Ireland Court of Appeal

NRC National Research Council

Ns number of same-speaker comparisons

NSW New South Wales

0 odds

p probability

p. page

PLDA  probabilistic linear discriminant analysis

pp. pages

R Regina

S second(s)

UK United Kingdom

us United States

v Versus

VOT voice onset time

WA Western Australia
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Glossary

This glossary is intended to indicate the specific meaning of particular words as used in the present
document. The entries are not intended to provide exhaustive definitions, but usually reference
the section in the present document where the relevant concepts are discussed.

accent

accuracy

acoustic phonetics

acoustic-phonetic-

statistical approach

alveolar ridge

anti-resonance

approach

arytenoid cartilages

aspiration

auditory-acoustic-

phonetic approach

auditory approach

automatic approach

— A regional or social accent refer to the way speakers from a
particular region or a particular social group speak. Sometimes a
contrast is made between pronunciation (accent) and words and
grammar used (dialect).

— The extent to which a measurement or estimate approximates the
true value (synonymous with validity) [99.290].

— The study of the acoustic properties of speech, i.e., the analysis of
sound waves which are created by human vocal tracts, which
propagate through the air, and which are detectable by human ears
or by microphones [99.440].

— An approach to forensic voice comparison based on making
acoustic-phonetic measurements and analysing the measured values
using statistical models [99.700].

— Part of the vocal tract near the front of the roof of the mouth
[99.450].

— frequency at which a sound is reduced in amplitude, particularly in
nasal sounds [99.480]

— A method for extracting information from voice recordings for the
purpose of conducting forensic voice comparison (cf, framework,
paradigm) [99.650].

— Part of the larynx [99.540].

— Turbulent airflow between vocal folds at the beginning of a
plosive [99.520].

— An approach to forensic voice comparison based on listening and
acoustic-phonetic measurements [99.660].

— An approach to forensic voice comparison based on listening
[99.660].

— An approach to forensic voice comparison based on acoustic
measurements made using signal-processing techniques and
analysing the measured values using statistical models [99.720].
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bandpass

Bayes’ Theorem

bilabial

bit rate

blade
breathy voicing

broad transcription

calibration

channel effect

clipping

closed quotient

coarticulation

codec

coefficient

cognitive bias

confirmation bias

— The range of frequencies which are transmitted by a transmission
system, e.g., a telephone system [99.610].

— A statement of the normative logical relationship between beliefs
about competing hypotheses (e.g., same-speaker versus different-
speaker hypotheses) before and after the presentation of the strength
of evidence [99.160].

— A speech sound made with a closure or constriction of the lips
[99.520].

— A measure of the amount of information encoded or transmitted
per second of speech 0[99.600].

— Part of the front of the tongue [99.480].
— Voicing combined with turbulent airflow [99.540].

— A written representation of speech sounds providing relatively
little phonetic detail [99.460].

— A procedure for converting scores to likelihood ratios [99.240].

— Changes to a signal introduced by recording or transmission
conditions [99.600].

— Truncation of the high-amplitude portions of a signal [99.600].

— The portion of a vocal fold vibration during which the vocal folds
are closed [99.540].

— Qverlap of the pronunciation of one speech sound with the
pronunciation of the proceeding and/or following speech sound
[99.480].

— A signal compression and decompression algorithm [99.610].

— The value calculated when fitting a model to data [99.720].

— The subconscious influence of task-irrelevant information on
human decision making [99.160].

— A form of cognitive bias in which more weight is given to
evidence that is consistent with an existing belief and less weight to
evidence that is inconsistent with the existing belief [99.1020].
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constriction

creaky voicing

cross validation

defence attorney’s
fallacy

diacritic

dialect

diphthong

dorsum

earwitness

error rate

feature warping

foil speakers

formant transitions

formant

— A narrowing made in the vocal tract in order to produce a speech
sound [99.460].

— Irregular low-frequency vocal fold vibration [99.540].

— A procedure which allows a single set of data to be used for
training and testing. It repeatedly divides the data onto different
parts to avoid training and testing on the same data [99.820].

— A logical error in the interpretation of the meaning of a likelihood
ratio [99.390].

— A small symbol used to modify a phonetic symbol and give a more
detailed transcription of a speech sound [99.460].

— A regional or social dialect refer to the way speakers from a
particular region or a particular social group speak. Sometimes a
contrast is made between pronunciation (accent) and words and
grammar used (dialect).

— A vowel with substantial formant movement over its duration
[99.460].

— The back of the tongue [99.450].

— A person who is present at the scene of a crime, hears the offender
speaking, and either immediately recognises the offender’s voice as
belonging to a particular person they already know, or who later
attempts to pick the speaker out of a voice lineup [99.960].

— The proportion of test results which are incorrect [99.300].

— A statistical procedure to compensate for mismatched in recording
conditions. It is commonly used in the automatic approach to
forensic voice comparison [99.870].

— Speakers who sound broadly similar to the voice on the questioned
speaker recording (or to the known speaker) [99.660], or to the
suspect in a voice lineup [99.960].

— Changes in formants as the vocal tract changes from the shape
needed to make a consonant to the shape needed to make a vowel or
vice versa [99.520].

— A resonance frequency of a vocal tract [99.460].
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framework

fricative

fundamental frequency

(f0)

fusion

Gaussian distribution
Gaussian mixture
model

Gaussian mixture
model - universal
background model
(GMM-UBM)
harmonic

hertz (Hz)

histogram

idiolect

intensity

intonation

i-vector

jitter

— A system of reasoning in order to assess strength of evidence
based on information (cf, approach, paradigm) [99.140].

— A speech sound made with a constriction in the vocal tract that
causes turbulent airflow 0[99.500].

— The rate at which the vocal folds vibrate during voicing. The
physical correlate of what is perceived as pitch [99.540].

— A procedure for combining the parallel score or likelihood ratio
output of several forensic comparison systems and converting them
to likelihood ratios [99.240].

— (aka normal distribution) A simple probability density function, a
widely used statistical model [99.220].

— A complex probability density function [99.230].

— A statistical model used in the automatic approach to forensic
voice comparison [99.720].

— A multiple of the fundamental frequency [99.610].
— A measure of frequency, i.e., number of repetitions per second.

— A graphical representation of the proportion of data falling within
different ranges [99.220].

— The pronunciation peculiarities of an individual, finer grained than
the peculiarities of a dialect [99.470].

— The physical correlate of what is perceived as loudness [99.600].

— A long-term fundamental-frequency pattern which signals
linguistic (or paralinguistic) information such as whether the
utterance is a question or a declaration [99.540].

— A statistical-model representation of the properties of the speech
on a recording commonly used in the automatic approach to
forensic voice comparison [99.720].

— The degree to which the duration of individual voicing cycles vary
[99.540].
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laryngeal
larynx
likelihood-ratio
framework

likelihood ratio (LR)

linear discriminant
analysis (LDA)

log likelihood ratio

log-likelihood-ratio
cost (Cur)

logistic regression

match probability

mel-frequency cepstral
coefficients (MFCC)

mel
monophthong
Monte Carlo
simulation

narrow transcription

nasal cavities

— Adjectival form of larynx [99.450].

— The structure at the bottom of the vocal tract. It includes the vocal
folds [99.450].

— A framework for the evaluation of forensic evidence. It is
considered by most forensic statisticians to be the logically correct
framework for evaluation of forensic evidence [99.140].

— A numeric expression of the strength of evidence [99.150].

— A statistical model commonly used in acoustic-phonetic-statistical
and automatic approaches to forensic voice comparison [99.810].

— A likelihood ratio expressed on a logarithmic scale [99.300].

— A measure of the accuracy of a forensic analysis system which
quantifies strength of evidence as likelihood ratios [99.300].

— A statistical model commonly used in acoustic-phonetic-statistical
and automatic approaches to forensic voice comparison. A method
for performing calibration and fusion [99.240].

— The denominator of the likelihood ratio — only applicable when the
data are discrete and the numerator of the likelihood ratio is 1
[99.190].

— Measurements of speech signals commonly made in the automatic
approach to forensic voice comparison [99.720].

— A measure of frequency based on how humans perceive the
frequency of sounds, which differs from the hertz scale [99.810].

— A vowel with negligible formant movement over its duration
[99.460].

— A statistical procedure which can be used to explore the reliability
of a statistical model [99.820].

— A relatively detailed written representation of speech sounds
[99.460].

— The internal structures of the nose. Part of the vocal tract [99.450].
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nasal

nasalised vowel

nasopharyngeal tube

non-stressed vowel

normal distribution

open quotient

oral cavity

oropharyngeal tube

packet

paradigm

paradigm shift
pharyngeal cavity

phoneme

phonetic symbol

phonetics

— A speech sound produced with a closure in the oral cavity and an
open velopharyngeal port. VVoicing produced at the vocal folds
excites the resonance frequencies of the supralaryngeal vocal tract
including the oral and nasal cavities [99.480].

— A vowel made with the velopharyngeal port open. Resonances and
antiresonances are contributed by both the oral and nasal cavities
[99.480].

— The pharyngeal cavity (throat) plus the nasal cavities [99.480].

— A relatively short vowel with some degree of neutralisation of
formant values [99.460].

— (aka Gaussian distribution) A simple probability density function,
a widely used statistical model [99.220].

— The portion of a vocal fold vibration during which the vocal folds
are open [99.540].

— The mouth. Part of the vocal tract [99.450].

— The pharyngeal cavity (throat) plus the oral cavity (mouth)
[99.450].

— The portion of a signal transmitted as a unit by a mobile telephone
system or voice over internet system [99.610].

— “the entire constellation of beliefs, values, techniques, and so on
shared by the members of a given [scientific] community” (Kuhn,
1970, p. 175). It includes the combination of approach and framework
used [99.70].

— A change in the culture of science [99.70].

— The throat. Part of the vocal tract [99.450].

— A speech sound which contrasts with other speech sounds in a
given language or dialect [99.460].

— A symbol used to transcribe a speech sound (e.g., a symbol of the
International Phonetic Alphabet, IPA) [99.460].

— The study of the physical aspects of the production, transmission,
and perception of human speech [99.440].
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plosive

precision

probabilistic linear
discriminant analysis
(PLDA)

probability density
function

prosecutor’s fallacy

quantisation resolution

relevant population

reliability

resonance frequency

rounded lips

sampling frequency

schwa [9]

score

— A speech sound made by creating complete oral cavity and
velopharyngeal-port closure, compressing the lungs so as to increase
air pressure in the vocal tract, then releasing the pressure by rapidly
opening the oral closure [99.520].

— The extent to which multiple measurements or estimates of the
same value differ from each other (synonymous with reliability)
[99.290].

— A statistical model commonly used in the automatic approach to
forensic voice comparison [99.720].

— A statistical model of the distribution of one or more continuous
variables [99.220].

— A logical error in the interpretation of the meaning of a likelihood
ratio [99.380].

— The number of values used to digitally encode the intensity of a
signal [99.600].

— The population of speakers, any one of whom who could
potentially be the questioned speaker if the questioned speaker were
not the known speaker [99.180].

— The extent to which multiple measurements or estimates of the
same value differ from each other (synonymous with precision)
[99.290].

— The frequency at which a sound is amplified by a resonator such as
the supralaryngeal vocal tract [99.460].

— Lips held in a configuration such as when saying the vowel sound
of “who” [99.460].

— The number of times per second a measurement is taken when
digitising a signal [99.600].

— A non-stressed (neutral) vowel sound [99.460].

— A value which quantifies the degree of similarity of samples of
known and questioned origin and while also taking into
consideration their typicality with respect to the relevant population.
The value of a score, however, is not directly interpretable as a
meaningful likelihood ratio [99.240].
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shimmer

signal processing

similarity

spectra

spectrogram

spectrographic
approach

spectrum

speech

speech processing

spread lips

strength of evidence

stressed vowel

supralaryngeal vocal
tract

— The degree to which the amplitude of voicing varies across cycles
[99.540].

— A branch of engineering dealing with the analysis and
manipulation audio and video signals, e.g., in telecommunications
systems [99.720].

— The extent to which the properties of the voice on the questioned-
speaker recording resemble those of the voice on the known-speaker
recording [99.150].

— The plural of spectrum.

— A graphical representation of a signal such as an acoustic speech
signal. Time is represented on the x axis, frequency on the y axis,
and intensity as the darkness of a monochrome scale (or the colour
in a colour spectrum scale) [99.460].

— An approach to forensic voice comparison based on looking at
spectrograms [99.680].

— The frequency properties of a speech signal at a point in time (cf,
spectrogram) [99.460].

— Sounds produced by a human vocal tract for the purpose of
communication (used synonymously with voice). Speech contrasts
with “language” which relates to words and grammar.

— A branch of signal processing dealing specifically with the
analysis and manipulation speech signals [99.720].

— Lips held in a smiling-like configuration [99.460].

— The conclusion reached by the forensic practitioner with respect to
the probability of obtaining the evidence if the prosecution
hypothesis (e.g., same-speaker hypothesis) were true versus if the
defence hypothesis (e.g., different-speaker hypothesis) were true
[99.150].

— A relatively long vowel with well-defined formant values
[99.460].

— The portion of the vocal tract above the larynx [99.450].

Morrison, Enzinger, Zhang

125 2017-12-19a



EXPERT EVIDENCE

FORENSIC SPEECH SCIENCE CHAPTER 99

t distribution

tip

train a statistical model

training data

Tippett plot

tone

transposition of

conditionals

trier of fact

trier of fact’s fallacy

turbulent airflow

typicality

validity

velopharyngeal port
velum

vocal folds

— A probability density function, a statistical model sometimes used
in acoustic-phonetic-statistical and automatic approaches to
forensic voice comparison [99.810].

— Part of the front of the tongue [99.440].

— Perform the calculations necessary to build a statistical model. For
example, in the case of a univariate Gaussian distribution, the mean
and the standard deviation must be calculated [99.220].

— The data used to train a statistical model.

— A graphical representation of the results of a test of a forensic
analysis system which quantifies strength of evidence using

likelihood ratios [99.330].

— A fundamental-frequency pattern which distinguishes one
phoneme from other phonemes [99.540].

— A logical error in the interpretation of the meaning of a likelihood
ratio (aka prosecutor’s fallacy) [99.380].

— The decision maker in legal proceedings, who could be a judge, a
panel of judges, or a lay jury, depending on the legal system.

— A logical error in the interpretation of the meaning of a likelihood
ratio [99.394].

— Irregular movement of air through a constriction in the vocal tract
which causes a noise [99.500].

— The extent to which the properties of the voice on the questioned-
speaker recording resemble those of the voices on recordings of a
sample of speakers from the relevant population [99.150].

— The extent to which a measurement or estimate approximates the
true value (synonymous with accuracy) [99.290].

— The opening between the pharyngeal and nasal cavities [99.450].
— The soft palate. Part of the vocal tract [99.450].

— The structure in the larynx which can be made to vibrate to
produce voicing [99.450].
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vocal tract

voice

voice lineup

voice-onset time (VOT)

voiced

voicegram
identification

voiceless

voiceprinting

voicing

vowel

— The larynx, throat (pharyngeal cavity), mouth (oral cavity), and
nose (nasal cavities) when used to make speech sounds [99.450].

— Sounds produced by a human vocal tract for the purpose of
communication (used synonymously with speech). Voice can also be
used to refer more specifically to laryngeal and vocal fold activity.
— The presentation of a series of voice recordings to an earwitness to
see whether the earwitness recognises the voice of a speaker they
heard earlier [99.960].

— The time between the release of the closure of a plosive and the
beginning of voicing [99.520].

— A sound make with vibrating vocal folds [99.460].

— Spectrographic approach [99.680].

— A sound make without vibrating vocal folds [99.460].

— Spectrographic approach. This particular term may be considered
pejorative [99.680].

— The vibration of the vocal folds used in the production of speech
sounds [99.460].

— A speech sound made with an open oral cavity. Voicing produced
at the vocal folds excites the resonance frequencies of the
supralaryngeal vocal tract [99.460].
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